QAnon Text Analysis shows Imbalanced Datasets and Generic differences
#facesbehindqanon #qanontextanalysis #ethnology #authorshipanalysis #imbalanceddata #datapreparation #corpusdesign #textforensics
https://hackernoon.com/qanon-text-analysis-shows-imbalanced-datasets-and-generic-differences
#facesbehindqanon #qanontextanalysis #ethnology #authorshipanalysis #imbalanceddata #datapreparation #corpusdesign #textforensics
https://hackernoon.com/qanon-text-analysis-shows-imbalanced-datasets-and-generic-differences
Hackernoon
QAnon Text Analysis shows Imbalanced Datasets and Generic differences
This section addresses imbalanced datasets and generic differences in QAnon text analysis, creating large and controlled subcorpora for machine-learning models.
Challenges in Building a QAnon Authorship Corpus
#facesbehindqanon #ethnology #authorshipanalysis #corpusconstitution #datacollection #machinelearning #textforensics #socialmediaarchives
https://hackernoon.com/challenges-in-building-a-qanon-authorship-corpus
#facesbehindqanon #ethnology #authorshipanalysis #corpusconstitution #datacollection #machinelearning #textforensics #socialmediaarchives
https://hackernoon.com/challenges-in-building-a-qanon-authorship-corpus
Hackernoon
Challenges in Building a QAnon Authorship Corpus
This section highlights the challenges of building a reliable text corpus for QAnon authorship analysis due to deleted accounts and limited archival data.
Machine Learning and Linguistic Profiles Sheds Light on Q's Possible Authors
#facesbehindqanon #machinelearning #ailinguisticanalysis #digitalinvestigation #stylometry #textforensics #echnology
https://hackernoon.com/machine-learning-and-linguistic-profiles-sheds-light-on-qs-possible-authors
#facesbehindqanon #machinelearning #ailinguisticanalysis #digitalinvestigation #stylometry #textforensics #echnology
https://hackernoon.com/machine-learning-and-linguistic-profiles-sheds-light-on-qs-possible-authors
Hackernoon
Machine Learning and Linguistic Profiles Sheds Light on Q's Possible Authors
Machine learning identifies linguistic patterns in QAnon texts, suggesting key authors like Ron W. and Paul F., and uncovering distinct writing styles.