🔍 OpenLLMetry —стандартизированная observability для LLM-приложений. Это значит, что мониторинг вызовов к OpenAI, Anthropic или векторным базам вроде Pinecone и Weaviate можно интегрировать в существующие системы без перестройки пайплайнов.
Интересно, что решение работает в двух режимах: как готовый SDK для быстрого старта и как набор инструментаций для тех, кто уже использует OpenTelemetry. При этом собранные данные сохраняют совместимость kll— можно начать с Traceloop, а затем переключиться на другой бэкенд без потери истории.
🤖 GitHub
@machinelearning_ru
Интересно, что решение работает в двух режимах: как готовый SDK для быстрого старта и как набор инструментаций для тех, кто уже использует OpenTelemetry. При этом собранные данные сохраняют совместимость kll— можно начать с Traceloop, а затем переключиться на другой бэкенд без потери истории.
🤖 GitHub
@machinelearning_ru
❤1👍1🔥1
🌊 H2O-3 — это in-memory платформа, которая интегрируется с популярными экосистемами через знакомые интерфейсы: Python, R, Java и даже веб-ноутбуки Flow.
H2O поддерживает автоматизированное машинное обучение и экспорт моделей в лёгкие форматы MOJO/POJO для продакшена. При этом платформа остаётся расширяемой: можно добавлять собственные алгоритмы и трансформации данных.
🤖 GitHub
@machinelearning_ru
H2O поддерживает автоматизированное машинное обучение и экспорт моделей в лёгкие форматы MOJO/POJO для продакшена. При этом платформа остаётся расширяемой: можно добавлять собственные алгоритмы и трансформации данных.
🤖 GitHub
@machinelearning_ru
👍4❤2🔥2
Forwarded from Machinelearning
SkyReels‑V2 - опенсорс генератор видео из текста, который не только соперничает с лучшими закрытыми решениями, но и предлагает уникальное преимущество — теоретически неограниченную длину генераций.
- Story Generation: полный конвейер от генерации текста до последовательного сюжета для видео.
- Image‑to‑Video
- Camera Director: управление виртуальной камерой — смена углов, зум, трекинг.
- Elements‑to‑Video: генерация отдельных объектов или эффектов, которые затем интегрируются в общий видеоряд.
На бенчмарках SkyReels V2 лидирует среди открытых моделей на VBench с 83.9%, оставляя позади Wan2.1, HunyuanVideo и OpenSora 2.0.
▪ Попробовать
▪ Github
▪ Technical Report
▪ Hugging Face
▪ ModelScope
#AI #TextToFilm #VideoGeneration #SkyReelsV2 #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥4❤3
Media is too big
VIEW IN TELEGRAM
Sand AI выпустила Magi-1, первую в истории Text-to-Video модель с 24 млрд. параметров, разработанную специально для создания видео. Magi-1 опубликована в открытом доступе и позволяет создавать высококачественные полнометражные видеоролики с исключительной реалистичностью, плавностью и тонким контролем над видеосценами.
Черрипики и результаты тестов в популярных бенчмарках превосходны. Попробовать можно в демо-спейсе.
sand.ai
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2
Forwarded from Machinelearning
CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.
CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой
tracking by attention позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели
ConvNextV2. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).
Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.
Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.
# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion
# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion
# Install dependencies
pip install -e
# Download models
bash get_pretrained_models.sh
# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/
@ai_machinelearning_big_data
#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥2❤1
Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.
Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍3❤2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1