🌟 Только что вышла модель Jamba 1.5.
✨ Архитектура SSM-Transformer сочетает в себе качество Transformer и эффективность Mamba, меньший объем занимаемой памяти, более легкую тонкую настройку в длинных контекстах.
🚀 Jamba 1.5: новое открытое семейство LLM от AI21
- Варианты Mini и Large
- Новая архитектура SSM-трансформатора e
- Гибридная модель SSM-трансформера на основе смеси экспертов (MoE)
📏 Контекстное окно:
- 256K лексем (самое длинное среди открытых моделей)
- Поддерживает качество на протяжении всего контекста
⚡ Скорость:
- До 2,5 раз быстрее на длинных контекстах
- Jamba 1.5 Mini: Самый быстрый на 10K контекстах (тест искусственного анализа)
🏆 Производительность:
- Jamba 1.5 Mini: 46,1 в бенчмарке Arena Hard
- Jamba 1.5 Large: 65.4 в бенчмарке Arena Hard (превосходит Llama 3.1 70B и 405B)
💾 Новая техника квантования: ExpertsInt8
- Предназначена для моделей MoE
- Квантует веса MoE/MLP в INT8
- Самая низкая задержка среди техник квантования vLLM
- Mini позволяет разместить до 140K контекстов в одном A100
🌐 Особенности:
- Многоязыковая поддержка
- Вывод JSON, вызов функций, объекты документов, цитаты
🔧 Примеры использования:
- Анализ документов, рабочие процессы RAG, поддержка клиентов
🖥️ Доступность:
- Несколько платформ: AI21 Studio, Google Cloud, Azure, Hugging Face, NVIDIA NIM.
Поддерживается в трансформаторах и VLLM
Официальное объявление - https://ai21.com/blog/announcing-jamba-model-family
Модель - https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251
@machinelearning_ru
✨ Архитектура SSM-Transformer сочетает в себе качество Transformer и эффективность Mamba, меньший объем занимаемой памяти, более легкую тонкую настройку в длинных контекстах.
🚀 Jamba 1.5: новое открытое семейство LLM от AI21
- Варианты Mini и Large
- Новая архитектура SSM-трансформатора e
- Гибридная модель SSM-трансформера на основе смеси экспертов (MoE)
📏 Контекстное окно:
- 256K лексем (самое длинное среди открытых моделей)
- Поддерживает качество на протяжении всего контекста
⚡ Скорость:
- До 2,5 раз быстрее на длинных контекстах
- Jamba 1.5 Mini: Самый быстрый на 10K контекстах (тест искусственного анализа)
🏆 Производительность:
- Jamba 1.5 Mini: 46,1 в бенчмарке Arena Hard
- Jamba 1.5 Large: 65.4 в бенчмарке Arena Hard (превосходит Llama 3.1 70B и 405B)
💾 Новая техника квантования: ExpertsInt8
- Предназначена для моделей MoE
- Квантует веса MoE/MLP в INT8
- Самая низкая задержка среди техник квантования vLLM
- Mini позволяет разместить до 140K контекстов в одном A100
🌐 Особенности:
- Многоязыковая поддержка
- Вывод JSON, вызов функций, объекты документов, цитаты
🔧 Примеры использования:
- Анализ документов, рабочие процессы RAG, поддержка клиентов
🖥️ Доступность:
- Несколько платформ: AI21 Studio, Google Cloud, Azure, Hugging Face, NVIDIA NIM.
Поддерживается в трансформаторах и VLLM
Официальное объявление - https://ai21.com/blog/announcing-jamba-model-family
Модель - https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251
@machinelearning_ru
👍6❤4🔥4
⚡️ FLoD
Интеграция гибкого уровня детализации в 3D Gaussian Splatting для настраиваемого рендеринга
3D Gaussian Splatting (3DGS) позволяет добиться быстрой и качественной визуализации за счет использования множества мелких гауссианов, что приводит к значительному расходу памяти. Такая зависимость от большого количества гауссианов ограничивает применение моделей на основе 3DGS на слабых устройствах из-за нехватки памяти.
Однако простое уменьшение числа гауссианов для работы с устройствами с меньшим объемом памяти приводит к ухудшению качества по сравнению с качеством, которое может быть достигнуто на высокопроизводительном оборудовании.
Чтобы решить эту проблему нехватки масштабируемости, в данном методе предлагается интегрировать в 3DGS гибкий уровень детализации (FLoD), который позволит визуализировать сцену с разным уровнем детализации в зависимости от возможностей оборудования.
В то время как существующие 3DGS с LoD сосредоточены на детальной реконструкции, данный метод обеспечивает реконструкцию с использованием небольшого числа гауссианов для снижения требований к памяти и большего числа гауссианов для повышения детализации сцен.
Эксперименты демонстрируют различные варианты рендеринга с компромиссами между качеством рендеринга и использованием памяти, что позволяет осуществлять рендеринг в реальном времени при различных ограничениях памяти. Кроме того, здесь показано, что метод обобщается на различные фреймворки 3DGS, что указывает на его потенциал для интеграции в будущие современные разработки.
https://huggingface.co/papers/2408.12894
@machinelearning_ru
Интеграция гибкого уровня детализации в 3D Gaussian Splatting для настраиваемого рендеринга
3D Gaussian Splatting (3DGS) позволяет добиться быстрой и качественной визуализации за счет использования множества мелких гауссианов, что приводит к значительному расходу памяти. Такая зависимость от большого количества гауссианов ограничивает применение моделей на основе 3DGS на слабых устройствах из-за нехватки памяти.
Однако простое уменьшение числа гауссианов для работы с устройствами с меньшим объемом памяти приводит к ухудшению качества по сравнению с качеством, которое может быть достигнуто на высокопроизводительном оборудовании.
Чтобы решить эту проблему нехватки масштабируемости, в данном методе предлагается интегрировать в 3DGS гибкий уровень детализации (FLoD), который позволит визуализировать сцену с разным уровнем детализации в зависимости от возможностей оборудования.
В то время как существующие 3DGS с LoD сосредоточены на детальной реконструкции, данный метод обеспечивает реконструкцию с использованием небольшого числа гауссианов для снижения требований к памяти и большего числа гауссианов для повышения детализации сцен.
Эксперименты демонстрируют различные варианты рендеринга с компромиссами между качеством рендеринга и использованием памяти, что позволяет осуществлять рендеринг в реальном времени при различных ограничениях памяти. Кроме того, здесь показано, что метод обобщается на различные фреймворки 3DGS, что указывает на его потенциал для интеграции в будущие современные разработки.
https://huggingface.co/papers/2408.12894
@machinelearning_ru
👍6❤2🔥2
Яндекс, НМИЦ Кулакова и фонд "Спина бифида" представили нейросеть для диагностики редкой патологии
Яндекс, при поддержке НМИЦ Кулакова и фонда "Спина бифида", разработал инновационную нейросеть, которая помогает врачам обнаруживать признаки spina bifida — редкого врожденного заболевания центральной нервной системы у плода. Ранняя диагностика этого заболевания критична для успешного лечения.
Какие технологии и типы нейросетей применили специалисты:
Диагностика патологии по изображению — сложный многоэтапный процесс, ребята воплотили клиническое мышление врача в технический алгоритм, хотя бы в упрощённой форме.
Получилось такое решение: врач загружает ультразвуковой снимок через веб‑интерфейс, после чего модель обрезает изображение до зоны интереса и в зависимости от плоскости передаёт его в соответствующие модели классификации для оценки корректности и наличия патологии. Если врач не согласен с выводом, он может оставить обратную связь, которую мы будем использовать для дообучения алгоритма.
Чтобы реализовать этот план спецы Yandex Cloud и студенты ШАДа обучили сразу несколько моделей:
_ YOLOv10 для поиска зоны интереса и категоризации её плоскости;
- по две модели DenseNet121 для определения корректности изображения и поиска патологии отдельно для аксиальной и сагиттальной плоскости.
Весь процесс, включая аугментацию данных, обучение модели, инференс и интерпретацию результатов через GradCAM был реализован с помощью библиотеки MONAI, что значительно ускорило эксперименты и разработку прототипа. В результате модели по качеству распознавания превзошли остальные специализированные решения. Они эффективно выделяли ключевые зоны и проводили классификацию.
Зачем в проекте облако:
- Облачные решения дают возможность:
- собирать и размечать данные;
- обучать модели;
- разрабатывать веб‑приложения;
- развёртывать приложения и модели, масштабировать их при увеличении нагрузки;
- собирать обратную связь, дообучать модели и развёртывать обновления в эксплуатацию.
Это позволяет системе совершенствоваться и становиться более эффективной со временем.
Участники проекта выложили код разработки в опенсорс, чтобы привлечь к работе активных участников IT‑сообщества. Это позволит им использовать технологии для создания других сервисов поддержки принятия медицинских решений.
Следующий шаг — доработка моделей на основе отзывов от врачей и экспертов. Участники проекта планируют расширить набор данных и привлечь больше разработчиков для проверки и дообучения нейросети.
Яндекс, при поддержке НМИЦ Кулакова и фонда "Спина бифида", разработал инновационную нейросеть, которая помогает врачам обнаруживать признаки spina bifida — редкого врожденного заболевания центральной нервной системы у плода. Ранняя диагностика этого заболевания критична для успешного лечения.
Какие технологии и типы нейросетей применили специалисты:
Диагностика патологии по изображению — сложный многоэтапный процесс, ребята воплотили клиническое мышление врача в технический алгоритм, хотя бы в упрощённой форме.
Получилось такое решение: врач загружает ультразвуковой снимок через веб‑интерфейс, после чего модель обрезает изображение до зоны интереса и в зависимости от плоскости передаёт его в соответствующие модели классификации для оценки корректности и наличия патологии. Если врач не согласен с выводом, он может оставить обратную связь, которую мы будем использовать для дообучения алгоритма.
Чтобы реализовать этот план спецы Yandex Cloud и студенты ШАДа обучили сразу несколько моделей:
_ YOLOv10 для поиска зоны интереса и категоризации её плоскости;
- по две модели DenseNet121 для определения корректности изображения и поиска патологии отдельно для аксиальной и сагиттальной плоскости.
Весь процесс, включая аугментацию данных, обучение модели, инференс и интерпретацию результатов через GradCAM был реализован с помощью библиотеки MONAI, что значительно ускорило эксперименты и разработку прототипа. В результате модели по качеству распознавания превзошли остальные специализированные решения. Они эффективно выделяли ключевые зоны и проводили классификацию.
Зачем в проекте облако:
- Облачные решения дают возможность:
- собирать и размечать данные;
- обучать модели;
- разрабатывать веб‑приложения;
- развёртывать приложения и модели, масштабировать их при увеличении нагрузки;
- собирать обратную связь, дообучать модели и развёртывать обновления в эксплуатацию.
Это позволяет системе совершенствоваться и становиться более эффективной со временем.
Участники проекта выложили код разработки в опенсорс, чтобы привлечь к работе активных участников IT‑сообщества. Это позволит им использовать технологии для создания других сервисов поддержки принятия медицинских решений.
Следующий шаг — доработка моделей на основе отзывов от врачей и экспертов. Участники проекта планируют расширить набор данных и привлечь больше разработчиков для проверки и дообучения нейросети.
yandex.cloud
Как нейросети помогают врачам выявлять редкую патологию spina bifida при беременности
Рассказываем, как фонд «Спина бифида» поддерживает людей с заболеванием, чем НМИЦ АГП им. В. И. Кулакова занимается в области лечения патологии и как технологии и экспертиза Yandex Cloud и ШАД помогают выявлять spina bifida на ранних сроках беременности.
❤9👍4🔥3
Forwarded from Machinelearning
🚀 Новостной дайджест.
✔️ Появилось определение, что такое ИИ с открытым исходным кодом.
Open Source Initiative (OSI) представила определение, разработанное группой из 70 экспертов, включая ученых и представителей крупных технологических компаний. Согласно этому определению, открытый ИИ может использоваться без разрешения авторов, его компоненты подлежат инспекции создателями, а система может модифицироваться и не иметь ограничения на передачу от от одного лица другому.
OSI планирует создать механизм контроля, который будет выявлять модели, не соответствующие новому определению и публиковать список соответствующих моделей, среди которых ожидаются Pythia от Eleuther, OLMo от Ai2 и модели от коллектива LLM360.
technologyreview.com
✔️ Google запустила бесплатную "Галерею промптов" в AI Studio.
Функциональное бновление AI Studio, анонсированное Логаном Килпатриком, предлагает предустановленные промпты, которые демонстрируют возможности моделей семейства Gemini.
В "Prompt Gallery" уже доступны: генератор рецептов на основе схемы JSON, математический репетитор для квадратных уравнений, генератор рабочих листов для начальных классов, а также инструменты для тестирования кода на Python и анализа временной сложности функций.
venturebeat.com
✔️ Ресечеры борются с галлюцинациями ИИ в математике.
Исследователи из Беркли работают над проблемой "галлюцинаций" ИИ в математике, когда модели, такие как ChatGPT, генерируют неверные или вымышленные ответы. В экспериментах они обнаружили, что ChatGPT ошибался в решении алгебраических задач в одной трети случаев, но после применения метода "самосогласованности" (self-consistency) точность возросла до 70%. В статистике ошибки снизились с 29% до 13%, что все еще слишком много.
В другом исследовании 274 участника, использовавшие решения ChatGPT в качестве подсказок, показали прирост в 17% на тестах, в то время как группа с подсказками от людей улучшилась лишь на 12%. Исследование привело к прогнозам о возможности создания эффективных репетиторов на основе ИИ, однако необходимо больше данных о реальном использовании таких систем учащимися
hechingerreport.org
✔️ Путь к эффективным вычислениям в эпоху ИИ: охлаждение теплой водой.
Lenovo представила 6-е поколение технологии жидкостного охлаждения Neptune™, которая позволяет запускать серверные стойки мощностью более 100 кВт без необходимости в специализированном кондиционировании. Эта система обеспечивает до 40% снижение потребления энергии и 3,5-кратное улучшение термальной эффективности по сравнению с традиционными воздушными системами охлаждения. Технология использует теплую воду для охлаждения компонентов, уменьшая потребность в мощных вентиляторах.
csrwire.com
✔️ SyncWaveX: сервис автоматического липсинка для видео.
SyncWaveX автоматически синхронизирует движения губ и лица с аудио, позволяя создавать реалистичные видео с минимальными усилиями. Технология прямого синтеза аудио в видео позволяет генерировать контент, основываясь на аудиопотоке, без необходимости в 3D-моделировании.
SyncWaveX использует интеллектуальные технологии синтеза голоса и распознавания речи, которые позволяют генерировать новые треки, имитирующие оригинальный голос. Пользователи сервиса могут создавать неограниченное количество видео из одного шаблона. В ходе предзапуска уже было создано более 10,000 видео, попробовать можно тут
globenewswire.com
@ai_machinelearning_big_data
#news #ai #ml
Open Source Initiative (OSI) представила определение, разработанное группой из 70 экспертов, включая ученых и представителей крупных технологических компаний. Согласно этому определению, открытый ИИ может использоваться без разрешения авторов, его компоненты подлежат инспекции создателями, а система может модифицироваться и не иметь ограничения на передачу от от одного лица другому.
OSI планирует создать механизм контроля, который будет выявлять модели, не соответствующие новому определению и публиковать список соответствующих моделей, среди которых ожидаются Pythia от Eleuther, OLMo от Ai2 и модели от коллектива LLM360.
technologyreview.com
Функциональное бновление AI Studio, анонсированное Логаном Килпатриком, предлагает предустановленные промпты, которые демонстрируют возможности моделей семейства Gemini.
В "Prompt Gallery" уже доступны: генератор рецептов на основе схемы JSON, математический репетитор для квадратных уравнений, генератор рабочих листов для начальных классов, а также инструменты для тестирования кода на Python и анализа временной сложности функций.
venturebeat.com
Исследователи из Беркли работают над проблемой "галлюцинаций" ИИ в математике, когда модели, такие как ChatGPT, генерируют неверные или вымышленные ответы. В экспериментах они обнаружили, что ChatGPT ошибался в решении алгебраических задач в одной трети случаев, но после применения метода "самосогласованности" (self-consistency) точность возросла до 70%. В статистике ошибки снизились с 29% до 13%, что все еще слишком много.
В другом исследовании 274 участника, использовавшие решения ChatGPT в качестве подсказок, показали прирост в 17% на тестах, в то время как группа с подсказками от людей улучшилась лишь на 12%. Исследование привело к прогнозам о возможности создания эффективных репетиторов на основе ИИ, однако необходимо больше данных о реальном использовании таких систем учащимися
hechingerreport.org
Lenovo представила 6-е поколение технологии жидкостного охлаждения Neptune™, которая позволяет запускать серверные стойки мощностью более 100 кВт без необходимости в специализированном кондиционировании. Эта система обеспечивает до 40% снижение потребления энергии и 3,5-кратное улучшение термальной эффективности по сравнению с традиционными воздушными системами охлаждения. Технология использует теплую воду для охлаждения компонентов, уменьшая потребность в мощных вентиляторах.
csrwire.com
SyncWaveX автоматически синхронизирует движения губ и лица с аудио, позволяя создавать реалистичные видео с минимальными усилиями. Технология прямого синтеза аудио в видео позволяет генерировать контент, основываясь на аудиопотоке, без необходимости в 3D-моделировании.
SyncWaveX использует интеллектуальные технологии синтеза голоса и распознавания речи, которые позволяют генерировать новые треки, имитирующие оригинальный голос. Пользователи сервиса могут создавать неограниченное количество видео из одного шаблона. В ходе предзапуска уже было создано более 10,000 видео, попробовать можно тут
globenewswire.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥5🥰2
DeepMind’s New AI Looked At 100,000,000 Examples!
https://www.youtube.com/watch?v=QJtNQNgGLdM
@machinelearning_ru
https://www.youtube.com/watch?v=QJtNQNgGLdM
@machinelearning_ru
YouTube
DeepMind’s New AI Looked At 100,000,000 Examples!
❤️ Check out Weights & Biases and sign up for a free demo here: https://wandb.me/papersllm
📝 The results are available here:
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
📝 My paper on simulations that look almost like…
📝 The results are available here:
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
📝 My paper on simulations that look almost like…
👍5❤2🔥1
Forwarded from Machinelearning
Vikhr models - команда энтузиастов, занимающихся созданием и развитием русифицированных моделей искусственного интеллекта выпустила инструктивную модель Vikhr-Gemma-2B-instruct, построенную на базе Gemma2-2B, которая была дообучена на русскоязычном корпусе данных GrandMaster-PRO-MAX.
Датасет GrandMaster-PRO-MAX - собственный русскоязычный датасет проекта Vikhr models в формате вопрос-ответ, собранных из различных источников.
Характерной особенностью датасета является, то, что модели обученные на этом наборе данных будут иметь способность к Chain-Of-Thought (CoT), за счет использования более сложного промпта для генерации большинства ответов датасета.
Авторы опубликовали квантованные GGUF-версии модели в разрядности от 1-bit (832 MB) до 32-bit (10.5 GB).
Наиболее низкие показатели Perplexity, полученные в тестах на датасетах Veles и Wikitext-2 у GGUF-версий FP32, FP16, BF16, Q8_0 и Q5_K.
from transformers import AutoModelForCausalLM, AutoTokenizer
# Загрузка модели и токенизатора
model_name = "Vikhrmodels/Vikhr-Gemma-2B-instruct"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Подготовка входного текста
input_text = "Напиши стихотворение о весне в России."
# Токенизация и генерация текста
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
# Декодирование и вывод результата
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
@ai_machinelearning_big_data
#AI #LLM #Vikhr #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3🥰1
CopilotKit
Библиотека с открытым исходным кодом, которая позволяет очень просто интегрировать искусственный интеллект в приложение.
CopilotKit принимает на вход описание вашего приложения и передаст его в свою инфраструктуру React для создания:
- ИИ-чатботов в приложении
- Текстовые области с поддержкой ИИ
- RAG, вызов функций и интеграция
Библиотека имеет встроенную поддержку LangChain, LangGraph и LangServe. Вы можете использовать их для расширения возможностей движка.
Также в библиотеку встроены нативные UI/UX-компоненты, которые вы можете использовать в своих приложениях:
- CopilotChat
- CopilotSidebar
- CopilotPopup
- CopilotTextarea
Библиотека имеет открытый исходный код. Вы можете использовать ее самостоятельно. Вы можете использовать ее с любым LLM, включая GPT-4.
Этот проект занял второе место на HackerNews и ProductHunt. Он был трендом на GitHub.
🐱 GitHub
@machinelearning_ru
Библиотека с открытым исходным кодом, которая позволяет очень просто интегрировать искусственный интеллект в приложение.
CopilotKit принимает на вход описание вашего приложения и передаст его в свою инфраструктуру React для создания:
- ИИ-чатботов в приложении
- Текстовые области с поддержкой ИИ
- RAG, вызов функций и интеграция
Библиотека имеет встроенную поддержку LangChain, LangGraph и LangServe. Вы можете использовать их для расширения возможностей движка.
Также в библиотеку встроены нативные UI/UX-компоненты, которые вы можете использовать в своих приложениях:
- CopilotChat
- CopilotSidebar
- CopilotPopup
- CopilotTextarea
Библиотека имеет открытый исходный код. Вы можете использовать ее самостоятельно. Вы можете использовать ее с любым LLM, включая GPT-4.
Этот проект занял второе место на HackerNews и ProductHunt. Он был трендом на GitHub.
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤3👍3
✅ Увеличьте производительность Llama 3.1 в 1,9 раза с Medusa на платформе NVIDIA HGX H200 с коммутатором NVLink.
Новый крутой гайд от NVIDIA▶️
@machinelearning_ru
Новый крутой гайд от NVIDIA▶️
@machinelearning_ru
👍6🔥3❤2👎1😁1
🔥 Яндекс выложил программу конференции Practical ML Conf, которая состоится 14 сентября
Это конференция по CV/NLP/Speech/RecSys/MLOps/Data Science, где эксперты из разных областей рассказывают о практическом применении ML.
Особенно интересные доклады спикеров:
- Ирина Барская, руководитель службы аналитики и исследований – «Человек и LLM. Как оценивать качество моделей и строить их метрики качества».
- Виктор Плошихин, руководитель ML-лаборатории в Yandex Platform Engineering — «AI-инструмент для разработчика: как мы обучали LLM работе с кодом».
- Степан Комков, старший разработчик службы синтеза речи — «Синтез выразительной речи для аудиокниг, прошлое, настоящее и будущее — как GPT и диффузионные модели произвели революции в синтезе речи и как мы это используем».
- Савва Степурин, старший разработчик команды рекомендаций — «Как улучшить знакомые подходы для рекомендации незнакомого — как умная система рекомендаций помогает пользователям Яндекс Музыки открывать новые треки и артистов».
Можно прийти офлайн, если вы в Москве, или присоединиться онлайн.
📌 Подробности и регистрация
@machinelearning_ru
Это конференция по CV/NLP/Speech/RecSys/MLOps/Data Science, где эксперты из разных областей рассказывают о практическом применении ML.
Особенно интересные доклады спикеров:
- Ирина Барская, руководитель службы аналитики и исследований – «Человек и LLM. Как оценивать качество моделей и строить их метрики качества».
- Виктор Плошихин, руководитель ML-лаборатории в Yandex Platform Engineering — «AI-инструмент для разработчика: как мы обучали LLM работе с кодом».
- Степан Комков, старший разработчик службы синтеза речи — «Синтез выразительной речи для аудиокниг, прошлое, настоящее и будущее — как GPT и диффузионные модели произвели революции в синтезе речи и как мы это используем».
- Савва Степурин, старший разработчик команды рекомендаций — «Как улучшить знакомые подходы для рекомендации незнакомого — как умная система рекомендаций помогает пользователям Яндекс Музыки открывать новые треки и артистов».
Можно прийти офлайн, если вы в Москве, или присоединиться онлайн.
📌 Подробности и регистрация
@machinelearning_ru
👍6
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Sapiens Pytorch Inference
Библиотека и примеры с кодом для инференса моделей на Pytorch.
▪Код: https://github.com/ibaiGorordo/Sapiens-Pytorch-Inference
▪Видео: https://youtube.com/watch?v=hOyrnkQz1NE
Sapiens: https://github.com/facebookresearch/sapiens
@machinelearning_ru
Библиотека и примеры с кодом для инференса моделей на Pytorch.
▪Код: https://github.com/ibaiGorordo/Sapiens-Pytorch-Inference
▪Видео: https://youtube.com/watch?v=hOyrnkQz1NE
Sapiens: https://github.com/facebookresearch/sapiens
@machinelearning_ru
🔥9❤2👍2
Forwarded from Machinelearning
Microsoft Research обновил AutoGen Studio — Low-Code инструмент для разработчиков , предназначенный для создания, отладки и оценки многоагентных рабочих процессов.
AutoGen Studio разработан для повышения доступности среды управления локальным AI, позволяя разработчикам прототипировать и внедрять многоагентные системы без необходимости обширных знаний в области ML.
AutoGen Studio это веб-интерфейс и API Python. Он гибкий в использовании и его легко можно интегрировать его в различные среды разработки. Простой и понятный дизайн позволяет быстро собирать многоагентные системы с помощью удобного интерфейса drag-n-drop.
AutoGen Studio поддерживает API всех популярных онлайн-провейдеров LLM (OpenAI, Antрropic, Gemini, Groq, Amazon Bedrock, Corehe, MistralAI, TogetherAI ) и локальные бэкэнды :
vLLM, Ollama, LM Studio.
Возможности :
Roadmap для отслеживания новых функций, решенных проблем и запросов от сообщества разработчиков можно найти в Issues репозитория AutoGen Studio на Github.
⚠️ Примечания от разработчика:
🟠 AutoGen Studio не предназначен для использования в качестве готового к продакшену приложения. Это среда прототипирования и разработки процессов и агентов.🟠 AutoGen Studio находится в стадии активной разработки с частыми итерациями коммитов. Документация проекта обновляется синхронно с кодом.🟠 Системные требования к установке: Python 3.10+ и Node.js => 14.15.0.
@ai_machinelearning_big_data
#AI #AgentsWorkflow #MLTool #Microsoft #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Forwarded from Machinelearning
Новостной дайджест
✔️ Laion перевыпустит датасет Laion 5B.
Laion 5B - крупнейший открытый набор данных изображений в интернете. Он был изъят из публичного доступа из-за претензий о содержавшихся в нем неуместных и неэтических изображениях.
Новый набор данных, Re-LAION-5B создан в сотрудничестве Laion с организациями Internet Watch Foundation (IWF) и Canadian Center for Child Protection (C3P).
В процессе обновления было удалено 2236 ссылок, которые были идентифицированы как потенциально ведущие к подозрительному контенту. Новый набор данных Re-LAION-5B содержит 5,5 миллиардов пар текст-ссылка-изображение и будет доступен для скачивания в двух версиях: Re-LAION-5B research и Re-LAION-5B research-safe под лицензией Apache 2.0.
laion.ai
✔️ Pixar следующего поколения: как искусственный интеллект объединит фильмы и игры.
Большая статья о будущем анимационной индустрии и её трансформации благодаря новым технологиям на сайте венчурного фонда Andreessen Horowitz.
Основное внимание статьи уделяется тому, как искусственный интеллект и другие цифровые инструменты меняют процесс создания анимации.
Авторы приводят примеры стартапов и компаний, которые уже используют технологии ИИ для создания высококачественной анимации с меньшими затратами времени и ресурсов. Предполагается, что такие изменения могут привести к появлению новых форматов контента и расширению возможностей для независимых аниматоров.
a16z.com
✔️ Sam Altman, Bill Gates и создатель Youtube примут участие в TВ-шоу на канале ABC.
Oprah Winfrey анонсировала новый спецвыпуск о будущем искусственного интеллекта "AI and the Future of Us". В шоу примут участие : генеральный директор OpenAI Sam Altman, Bill Gates, Директор ФБР Christopher Wray и создатель Youtube Marques Brownlee.
В программе будут обсуждаться основы ИИ, его влияние на образование, здравоохранение и другие отрасли, а также его потенциальное воздействие на правоохранительные органы и национальную безопасность. На шоу будут продемонстрированы существующие продукты со встроенным ИИ.
Шоу выйдет в эфир на канале ABC 12 сентября в 20:00 EST и будет доступна для просмотра на платформе Hulu на следующий день.
Участие в шоу Oprah Winfrey является признаком того, что ИИ становится все более популярной и важной темой в обществе.
techradar.com
✔️ Новая архитектура нейронных сетей может сделать ИИ более понятными.
Новая архитектура нейронных сетей, Kolmogorov-Arnold Networks (KANs), может сделать искусственный интеллект более интерпретируемым. KANs отличаются от традиционных нейронных сетей тем, что они используют более простые и понятные человеку функции для преобразования входных данных.
Эксперименты, проведенные в MIT и других институтах показали, что KANs могут быть более точными чем традиционные нейронные сети, но обучение KANs требует больше времени и вычислительных ресурсов, чем традиционные нейронные сети.
technologyreview.com
✔️ Новый метод непрерывного дообучения моделей компьютерного зрения и языка.
В опубликованном исследовании предложен новый подход к непрерывному дообучению зрительных и языковых моделей, который учитывает реальные требования их развертыванию в практических приложениях.
Исследование включает в себя четыре направления: влияния различных комбинаций данных и порядка их поступления на процесс дообучения, сравнение различных методов дообучения, изучение влияния мета-LR и планировщиков на процесс дообучения и анализ влияния масштабирования модели и вычислительных ресурсов на процесс дообучения.
Результаты исследования дают практические рекомендации для непрерывного дообучения моделей. Дополнительно, предложена концепция платформы FoMo-in-Flux, которая будет оценивать эффективность методов дообучения.
arxiv.org
@ai_machinelearning_big_data
#news #ai #ml
Laion 5B - крупнейший открытый набор данных изображений в интернете. Он был изъят из публичного доступа из-за претензий о содержавшихся в нем неуместных и неэтических изображениях.
Новый набор данных, Re-LAION-5B создан в сотрудничестве Laion с организациями Internet Watch Foundation (IWF) и Canadian Center for Child Protection (C3P).
В процессе обновления было удалено 2236 ссылок, которые были идентифицированы как потенциально ведущие к подозрительному контенту. Новый набор данных Re-LAION-5B содержит 5,5 миллиардов пар текст-ссылка-изображение и будет доступен для скачивания в двух версиях: Re-LAION-5B research и Re-LAION-5B research-safe под лицензией Apache 2.0.
laion.ai
Большая статья о будущем анимационной индустрии и её трансформации благодаря новым технологиям на сайте венчурного фонда Andreessen Horowitz.
Основное внимание статьи уделяется тому, как искусственный интеллект и другие цифровые инструменты меняют процесс создания анимации.
Авторы приводят примеры стартапов и компаний, которые уже используют технологии ИИ для создания высококачественной анимации с меньшими затратами времени и ресурсов. Предполагается, что такие изменения могут привести к появлению новых форматов контента и расширению возможностей для независимых аниматоров.
a16z.com
Oprah Winfrey анонсировала новый спецвыпуск о будущем искусственного интеллекта "AI and the Future of Us". В шоу примут участие : генеральный директор OpenAI Sam Altman, Bill Gates, Директор ФБР Christopher Wray и создатель Youtube Marques Brownlee.
В программе будут обсуждаться основы ИИ, его влияние на образование, здравоохранение и другие отрасли, а также его потенциальное воздействие на правоохранительные органы и национальную безопасность. На шоу будут продемонстрированы существующие продукты со встроенным ИИ.
Шоу выйдет в эфир на канале ABC 12 сентября в 20:00 EST и будет доступна для просмотра на платформе Hulu на следующий день.
Участие в шоу Oprah Winfrey является признаком того, что ИИ становится все более популярной и важной темой в обществе.
techradar.com
Новая архитектура нейронных сетей, Kolmogorov-Arnold Networks (KANs), может сделать искусственный интеллект более интерпретируемым. KANs отличаются от традиционных нейронных сетей тем, что они используют более простые и понятные человеку функции для преобразования входных данных.
Эксперименты, проведенные в MIT и других институтах показали, что KANs могут быть более точными чем традиционные нейронные сети, но обучение KANs требует больше времени и вычислительных ресурсов, чем традиционные нейронные сети.
technologyreview.com
В опубликованном исследовании предложен новый подход к непрерывному дообучению зрительных и языковых моделей, который учитывает реальные требования их развертыванию в практических приложениях.
Исследование включает в себя четыре направления: влияния различных комбинаций данных и порядка их поступления на процесс дообучения, сравнение различных методов дообучения, изучение влияния мета-LR и планировщиков на процесс дообучения и анализ влияния масштабирования модели и вычислительных ресурсов на процесс дообучения.
Результаты исследования дают практические рекомендации для непрерывного дообучения моделей. Дополнительно, предложена концепция платформы FoMo-in-Flux, которая будет оценивать эффективность методов дообучения.
arxiv.org
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥3
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
⚡️Преобразование речи в речь в режиме реального времени
🤯Может генерировать текст и аудио одновременно
🚀Вывод потокового аудио
Модель: https://hf.co/gpt-omni/mini-omni
Документ: https://hf.co/papers/2408.16725
Код: https://github.com/gpt-omni/mini-omni
@machinelearning_ru
⚡️Преобразование речи в речь в режиме реального времени
🤯Может генерировать текст и аудио одновременно
🚀Вывод потокового аудио
Модель: https://hf.co/gpt-omni/mini-omni
Документ: https://hf.co/papers/2408.16725
Код: https://github.com/gpt-omni/mini-omni
@machinelearning_ru
❤6👍2🔥2
⚡️ OLMoE: Открытые языковые модели смеси экспертов
«OLMOE-1B-7B имеет 7 миллиардов (B) параметров, но использует только 1B на входную лексему.
Она предварительно обучена ее на 5 триллионах лексем.
OLMOE-1B-7B-INSTRUCT, превосходят все доступные модели с аналогичными активными параметрами, даже превосходят такие крупные модели, как Llama2-13B-Chat и DeepSeekMoE-16B.»
• Статья: https://arxiv.org/abs/2409.02060
• Модель: https://hf.co/allenai/OLMoE-1B-7B-0924
@machinelearning_ru
«OLMOE-1B-7B имеет 7 миллиардов (B) параметров, но использует только 1B на входную лексему.
Она предварительно обучена ее на 5 триллионах лексем.
OLMOE-1B-7B-INSTRUCT, превосходят все доступные модели с аналогичными активными параметрами, даже превосходят такие крупные модели, как Llama2-13B-Chat и DeepSeekMoE-16B.»
• Статья: https://arxiv.org/abs/2409.02060
• Модель: https://hf.co/allenai/OLMoE-1B-7B-0924
@machinelearning_ru
👍6❤3🔥2