Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
🌟 Только что вышла модель Jamba 1.5.

Архитектура SSM-Transformer сочетает в себе качество Transformer и эффективность Mamba, меньший объем занимаемой памяти, более легкую тонкую настройку в длинных контекстах.

🚀 Jamba 1.5: новое открытое семейство LLM от AI21
- Варианты Mini и Large
- Новая архитектура SSM-трансформатора e
- Гибридная модель SSM-трансформера на основе смеси экспертов (MoE)

📏 Контекстное окно:
- 256K лексем (самое длинное среди открытых моделей)
- Поддерживает качество на протяжении всего контекста

Скорость:
- До 2,5 раз быстрее на длинных контекстах
- Jamba 1.5 Mini: Самый быстрый на 10K контекстах (тест искусственного анализа)

🏆 Производительность:
- Jamba 1.5 Mini: 46,1 в бенчмарке Arena Hard
- Jamba 1.5 Large: 65.4 в бенчмарке Arena Hard (превосходит Llama 3.1 70B и 405B)

💾 Новая техника квантования: ExpertsInt8
- Предназначена для моделей MoE
- Квантует веса MoE/MLP в INT8
- Самая низкая задержка среди техник квантования vLLM
- Mini позволяет разместить до 140K контекстов в одном A100

🌐 Особенности:
- Многоязыковая поддержка
- Вывод JSON, вызов функций, объекты документов, цитаты

🔧 Примеры использования:
- Анализ документов, рабочие процессы RAG, поддержка клиентов

🖥️ Доступность:
- Несколько платформ: AI21 Studio, Google Cloud, Azure, Hugging Face, NVIDIA NIM.

Поддерживается в трансформаторах и VLLM

Официальное объявление - https://ai21.com/blog/announcing-jamba-model-family

Модель - https://huggingface.co/collections/ai21labs/jamba-15-66c44befa474a917fcf55251

@machinelearning_ru
👍64🔥4
⚡️ FLoD

Интеграция гибкого уровня детализации в 3D Gaussian Splatting для настраиваемого рендеринга

3D Gaussian Splatting (3DGS) позволяет добиться быстрой и качественной визуализации за счет использования множества мелких гауссианов, что приводит к значительному расходу памяти. Такая зависимость от большого количества гауссианов ограничивает применение моделей на основе 3DGS на слабых устройствах из-за нехватки памяти.

Однако простое уменьшение числа гауссианов для работы с устройствами с меньшим объемом памяти приводит к ухудшению качества по сравнению с качеством, которое может быть достигнуто на высокопроизводительном оборудовании.

Чтобы решить эту проблему нехватки масштабируемости, в данном методе предлагается интегрировать в 3DGS гибкий уровень детализации (FLoD), который позволит визуализировать сцену с разным уровнем детализации в зависимости от возможностей оборудования.

В то время как существующие 3DGS с LoD сосредоточены на детальной реконструкции, данный метод обеспечивает реконструкцию с использованием небольшого числа гауссианов для снижения требований к памяти и большего числа гауссианов для повышения детализации сцен.

Эксперименты демонстрируют различные варианты рендеринга с компромиссами между качеством рендеринга и использованием памяти, что позволяет осуществлять рендеринг в реальном времени при различных ограничениях памяти. Кроме того, здесь показано, что метод обобщается на различные фреймворки 3DGS, что указывает на его потенциал для интеграции в будущие современные разработки.

https://huggingface.co/papers/2408.12894

@machinelearning_ru
👍62🔥2
Яндекс, НМИЦ Кулакова и фонд "Спина бифида" представили нейросеть для диагностики редкой патологии

Яндекс, при поддержке НМИЦ Кулакова и фонда "Спина бифида", разработал инновационную нейросеть, которая помогает врачам обнаруживать признаки spina bifida — редкого врожденного заболевания центральной нервной системы у плода. Ранняя диагностика этого заболевания критична для успешного лечения.


Какие технологии и типы нейросетей применили специалисты:

Диагностика патологии по изображению — сложный многоэтапный процесс, ребята воплотили клиническое мышление врача в технический алгоритм, хотя бы в упрощённой форме.

Получилось такое решение: врач загружает ультразвуковой снимок через веб‑интерфейс, после чего модель обрезает изображение до зоны интереса и в зависимости от плоскости передаёт его в соответствующие модели классификации для оценки корректности и наличия патологии. Если врач не согласен с выводом, он может оставить обратную связь, которую мы будем использовать для дообучения алгоритма.

Чтобы реализовать этот план спецы Yandex Cloud и студенты ШАДа обучили сразу несколько моделей:

_ YOLOv10 для поиска зоны интереса и категоризации её плоскости;

- по две модели DenseNet121 для определения корректности изображения и поиска патологии отдельно для аксиальной и сагиттальной плоскости.

Весь процесс, включая аугментацию данных, обучение модели, инференс и интерпретацию результатов через GradCAM был реализован с помощью библиотеки MONAI, что значительно ускорило эксперименты и разработку прототипа. В результате модели по качеству распознавания превзошли остальные специализированные решения. Они эффективно выделяли ключевые зоны и проводили классификацию.

Зачем в проекте облако:

- Облачные решения дают возможность:

- собирать и размечать данные;

- обучать модели;

- разрабатывать веб‑приложения;

- развёртывать приложения и модели, масштабировать их при увеличении нагрузки;

- собирать обратную связь, дообучать модели и развёртывать обновления в эксплуатацию.

Это позволяет системе совершенствоваться и становиться более эффективной со временем.

Участники проекта выложили код разработки в опенсорс, чтобы привлечь к работе активных участников IT‑сообщества. Это позволит им использовать технологии для создания других сервисов поддержки принятия медицинских решений.

Следующий шаг — доработка моделей на основе отзывов от врачей и экспертов. Участники проекта планируют расширить набор данных и привлечь больше разработчиков для проверки и дообучения нейросети.
9👍4🔥3
Forwarded from Machinelearning
🚀 Новостной дайджест.

✔️ Появилось определение, что такое ИИ с открытым исходным кодом.

Open Source Initiative (OSI) представила определение, разработанное группой из 70 экспертов, включая ученых и представителей крупных технологических компаний. Согласно этому определению, открытый ИИ может использоваться без разрешения авторов, его компоненты подлежат инспекции создателями, а система может модифицироваться и не иметь ограничения на передачу от от одного лица другому.

OSI планирует создать механизм контроля, который будет выявлять модели, не соответствующие новому определению и публиковать список соответствующих моделей, среди которых ожидаются Pythia от Eleuther, OLMo от Ai2 и модели от коллектива LLM360.
technologyreview.com

✔️ Google запустила бесплатную "Галерею промптов" в AI Studio.

Функциональное бновление AI Studio, анонсированное Логаном Килпатриком, предлагает предустановленные промпты, которые демонстрируют возможности моделей семейства Gemini.
В "Prompt Gallery" уже доступны: генератор рецептов на основе схемы JSON, математический репетитор для квадратных уравнений, генератор рабочих листов для начальных классов, а также инструменты для тестирования кода на Python и анализа временной сложности функций.
venturebeat.com

✔️ Ресечеры борются с галлюцинациями ИИ в математике.

Исследователи из Беркли работают над проблемой "галлюцинаций" ИИ в математике, когда модели, такие как ChatGPT, генерируют неверные или вымышленные ответы. В экспериментах они обнаружили, что ChatGPT ошибался в решении алгебраических задач в одной трети случаев, но после применения метода "самосогласованности" (self-consistency) точность возросла до 70%. В статистике ошибки снизились с 29% до 13%, что все еще слишком много.

В другом исследовании 274 участника, использовавшие решения ChatGPT в качестве подсказок, показали прирост в 17% на тестах, в то время как группа с подсказками от людей улучшилась лишь на 12%. Исследование привело к прогнозам о возможности создания эффективных репетиторов на основе ИИ, однако необходимо больше данных о реальном использовании таких систем учащимися
hechingerreport.org

✔️ Путь к эффективным вычислениям в эпоху ИИ: охлаждение теплой водой.

Lenovo представила 6-е поколение технологии жидкостного охлаждения Neptune, которая позволяет запускать серверные стойки мощностью более 100 кВт без необходимости в специализированном кондиционировании. Эта система обеспечивает до 40% снижение потребления энергии и 3,5-кратное улучшение термальной эффективности по сравнению с традиционными воздушными системами охлаждения. Технология использует теплую воду для охлаждения компонентов, уменьшая потребность в мощных вентиляторах.
csrwire.com

✔️ SyncWaveX: сервис автоматического липсинка для видео.

SyncWaveX автоматически синхронизирует движения губ и лица с аудио, позволяя создавать реалистичные видео с минимальными усилиями. Технология прямого синтеза аудио в видео позволяет генерировать контент, основываясь на аудиопотоке, без необходимости в 3D-моделировании.

SyncWaveX использует интеллектуальные технологии синтеза голоса и распознавания речи, которые позволяют генерировать новые треки, имитирующие оригинальный голос. Пользователи сервиса могут создавать неограниченное количество видео из одного шаблона. В ходе предзапуска уже было создано более 10,000 видео, попробовать можно тут
globenewswire.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥5🥰2
Forwarded from Machinelearning
⚡️ Vikhr-Gemma-2B-instruct: Инструктивная русскоязычная версия Gemma2.

Vikhr models - команда энтузиастов, занимающихся созданием и развитием русифицированных моделей искусственного интеллекта выпустила инструктивную модель Vikhr-Gemma-2B-instruct, построенную на базе Gemma2-2B, которая была дообучена на русскоязычном корпусе данных GrandMaster-PRO-MAX.

Датасет GrandMaster-PRO-MAX - собственный русскоязычный датасет проекта Vikhr models в формате вопрос-ответ, собранных из различных источников.

Характерной особенностью датасета является, то, что модели обученные на этом наборе данных будут иметь способность к Chain-Of-Thought (CoT), за счет использования более сложного промпта для генерации большинства ответов датасета.

Авторы опубликовали квантованные GGUF-версии модели в разрядности от 1-bit (832 MB) до 32-bit (10.5 GB).

Наиболее низкие показатели Perplexity, полученные в тестах на датасетах Veles и Wikitext-2 у GGUF-версий FP32, FP16, BF16, Q8_0 и Q5_K.


▶️Пример запуска модели на Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Загрузка модели и токенизатора
model_name = "Vikhrmodels/Vikhr-Gemma-2B-instruct"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Подготовка входного текста
input_text = "Напиши стихотворение о весне в России."

# Токенизация и генерация текста
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)

# Декодирование и вывод результата
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)


📌Лицензирование : Apache 2.0 License (при обороте до 20млн.руб\год)


🟡Модель
🟡Набор GGUF
🟡Датасет
🟡Google Collab (инференс)


@ai_machinelearning_big_data

#AI #LLM #Vikhr #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3🥰1
CopilotKit

Библиотека с открытым исходным кодом, которая позволяет очень просто интегрировать искусственный интеллект в приложение.

CopilotKit принимает на вход описание вашего приложения и передаст его в свою инфраструктуру React для создания:
- ИИ-чатботов в приложении
- Текстовые области с поддержкой ИИ
- RAG, вызов функций и интеграция

Библиотека имеет встроенную поддержку LangChain, LangGraph и LangServe. Вы можете использовать их для расширения возможностей движка.

Также в библиотеку встроены нативные UI/UX-компоненты, которые вы можете использовать в своих приложениях:
- CopilotChat
- CopilotSidebar
- CopilotPopup
- CopilotTextarea

Библиотека имеет открытый исходный код. Вы можете использовать ее самостоятельно. Вы можете использовать ее с любым LLM, включая GPT-4.

Этот проект занял второе место на HackerNews и ProductHunt. Он был трендом на GitHub.

🐱 GitHub

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63👍3
Увеличьте производительность Llama 3.1 в 1,9 раза с Medusa на платформе NVIDIA HGX H200 с коммутатором NVLink.

Новый крутой гайд от NVIDIA
▶️

@machinelearning_ru
👍6🔥32👎1😁1
🔥 Яндекс выложил программу конференции Practical ML Conf, которая состоится 14 сентября

Это конференция по CV/NLP/Speech/RecSys/MLOps/Data Science, где эксперты из разных областей рассказывают о практическом применении ML.

Особенно интересные доклады спикеров:

- Ирина Барская, руководитель службы аналитики и исследований – «Человек и LLM. Как оценивать качество моделей и строить их метрики качества».
- Виктор Плошихин, руководитель ML-лаборатории в Yandex Platform Engineering — «AI-инструмент для разработчика: как мы обучали LLM работе с кодом».
- Степан Комков, старший разработчик службы синтеза речи — «Синтез выразительной речи для аудиокниг, прошлое, настоящее и будущее — как GPT и диффузионные модели произвели революции в синтезе речи и как мы это используем».
- Савва Степурин, старший разработчик команды рекомендаций — «Как улучшить знакомые подходы для рекомендации незнакомого — как умная система рекомендаций помогает пользователям Яндекс Музыки открывать новые треки и артистов».

Можно прийти офлайн, если вы в Москве, или присоединиться онлайн.

📌 Подробности и регистрация

@machinelearning_ru
👍6
Как LLM генерируют текст

@machinelearning_ru
👍102🔥2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Sapiens Pytorch Inference

Библиотека и примеры с кодом для инференса моделей на Pytorch.

Код: https://github.com/ibaiGorordo/Sapiens-Pytorch-Inference
Видео: https://youtube.com/watch?v=hOyrnkQz1NE
Sapiens: https://github.com/facebookresearch/sapiens

@machinelearning_ru
🔥92👍2
Forwarded from Machinelearning
🌟 Microsoft Research AutoGen Studio: Low-Code интерфейс для быстрого прототипирования агентов LLM.

Microsoft Research обновил AutoGen Studio — Low-Code инструмент для разработчиков , предназначенный для создания, отладки и оценки многоагентных рабочих процессов.
AutoGen Studio разработан для повышения доступности среды управления локальным AI, позволяя разработчикам прототипировать и внедрять многоагентные системы без необходимости обширных знаний в области ML.

AutoGen Studio это веб-интерфейс и API Python. Он гибкий в использовании и его легко можно интегрировать его в различные среды разработки. Простой и понятный дизайн позволяет быстро собирать многоагентные системы с помощью удобного интерфейса drag-n-drop.

AutoGen Studio поддерживает API всех популярных онлайн-провейдеров LLM (OpenAI, Antрropic, Gemini, Groq, Amazon Bedrock, Corehe, MistralAI, TogetherAI ) и локальные бэкэнды :
vLLM, Ollama, LM Studio.

Возможности :

🟢Создание / настройка агентов (пока поддерживаются 2 рабочих процесса агентов на основе UserProxyAgent и AssistantAgent), изменение их конфигурации (например, навыки, температура, модель, системные сообщения агента, модель и т.д.) и объединение их в рабочие процессы;

🟢Чат с агентами по рабочим процессам и определение для них задач;

🟢Просмотр сообщений агента и выходных файлов в пользовательском интерфейсе после запуска агента;

🟢Поддержка сложных рабочих процессов агентов (например, групповой чат и последовательные рабочие процессы);

🟢Улучшение качества работы пользователей (например, потоковая передача промежуточных ответов LLM, лучшее обобщение ответов агентов и т. д.);

🟢AutoGen Studio использует SQLModel (Pydantic + SQLAlchemy). Это обеспечивает связь между сущностями (навыки, модели, агенты и рабочие процессы связаны через таблицы ассоциаций) и поддерживает несколько диалектов бэкенда базы данных, которые есть в SQLAlchemy (SQLite, PostgreSQL, MySQL, Oracle, Microsoft SQL Server).

Roadmap для отслеживания новых функций, решенных проблем и запросов от сообщества разработчиков можно найти в Issues репозитория AutoGen Studio на Github.

⚠️ Примечания от разработчика:

🟠AutoGen Studio не предназначен для использования в качестве готового к продакшену приложения. Это среда прототипирования и разработки процессов и агентов.
🟠AutoGen Studio находится в стадии активной разработки с частыми итерациями коммитов. Документация проекта обновляется синхронно с кодом.
🟠Системные требования к установке: Python 3.10+ и Node.js => 14.15.0.



📌Лицензирование : CC-BY-NC-SA-4.0 License & MIT License


🟡Страница проекта
🟡Документация
🟡Arxiv
🟡Сообщество в Discord
🖥Github [ Stars: 30.2K | Issues: 493 | Forks: 4.4K]


@ai_machinelearning_big_data

#AI #AgentsWorkflow #MLTool #Microsoft #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍83🔥2
Forwarded from Machinelearning
Новостной дайджест

✔️ Laion перевыпустит датасет Laion 5B.

Laion 5B - крупнейший открытый набор данных изображений в интернете. Он был изъят из публичного доступа из-за претензий о содержавшихся в нем неуместных и неэтических изображениях.
Новый набор данных, Re-LAION-5B создан в сотрудничестве Laion с организациями Internet Watch Foundation (IWF) и Canadian Center for Child Protection (C3P).

В процессе обновления было удалено 2236 ссылок, которые были идентифицированы как потенциально ведущие к подозрительному контенту. Новый набор данных Re-LAION-5B содержит 5,5 миллиардов пар текст-ссылка-изображение и будет доступен для скачивания в двух версиях: Re-LAION-5B research и Re-LAION-5B research-safe под лицензией Apache 2.0.
laion.ai

✔️ Pixar следующего поколения: как искусственный интеллект объединит фильмы и игры.

Большая статья о будущем анимационной индустрии и её трансформации благодаря новым технологиям на сайте венчурного фонда Andreessen Horowitz.
Основное внимание статьи уделяется тому, как искусственный интеллект и другие цифровые инструменты меняют процесс создания анимации.

Авторы приводят примеры стартапов и компаний, которые уже используют технологии ИИ для создания высококачественной анимации с меньшими затратами времени и ресурсов. Предполагается, что такие изменения могут привести к появлению новых форматов контента и расширению возможностей для независимых аниматоров.
a16z.com

✔️ Sam Altman, Bill Gates и создатель Youtube примут участие в TВ-шоу на канале ABC.

Oprah Winfrey анонсировала новый спецвыпуск о будущем искусственного интеллекта "AI and the Future of Us". В шоу примут участие : генеральный директор OpenAI Sam Altman, Bill Gates, Директор ФБР Christopher Wray и создатель Youtube Marques Brownlee.

В программе будут обсуждаться основы ИИ, его влияние на образование, здравоохранение и другие отрасли, а также его потенциальное воздействие на правоохранительные органы и национальную безопасность. На шоу будут продемонстрированы существующие продукты со встроенным ИИ.
Шоу выйдет в эфир на канале ABC 12 сентября в 20:00 EST и будет доступна для просмотра на платформе Hulu на следующий день.
Участие в шоу Oprah Winfrey является признаком того, что ИИ становится все более популярной и важной темой в обществе.
techradar.com

✔️ Новая архитектура нейронных сетей может сделать ИИ более понятными.

Новая архитектура нейронных сетей, Kolmogorov-Arnold Networks (KANs), может сделать искусственный интеллект более интерпретируемым. KANs отличаются от традиционных нейронных сетей тем, что они используют более простые и понятные человеку функции для преобразования входных данных.

Эксперименты, проведенные в MIT и других институтах показали, что KANs могут быть более точными чем традиционные нейронные сети, но обучение KANs требует больше времени и вычислительных ресурсов, чем традиционные нейронные сети.
technologyreview.com

✔️ Новый метод непрерывного дообучения моделей компьютерного зрения и языка.

В опубликованном исследовании предложен новый подход к непрерывному дообучению зрительных и языковых моделей, который учитывает реальные требования их развертыванию в практических приложениях.

Исследование включает в себя четыре направления: влияния различных комбинаций данных и порядка их поступления на процесс дообучения, сравнение различных методов дообучения, изучение влияния мета-LR и планировщиков на процесс дообучения и анализ влияния масштабирования модели и вычислительных ресурсов на процесс дообучения.

Результаты исследования дают практические рекомендации для непрерывного дообучения моделей. Дополнительно, предложена концепция платформы FoMo-in-Flux, которая будет оценивать эффективность методов дообучения.
arxiv.org

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥3
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming

⚡️Преобразование речи в речь в режиме реального времени
🤯Может генерировать текст и аудио одновременно
🚀Вывод потокового аудио

Модель: https://hf.co/gpt-omni/mini-omni
Документ: https://hf.co/papers/2408.16725
Код: https://github.com/gpt-omni/mini-omni

@machinelearning_ru
6👍2🔥2