Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
📊Plotlars — крутая Rust-библиотека для отрисовки графиков

Работает как обёртка вокруг библиотеки Plotly, чтобы упростить процесс создания визуализаций из Polars DataFrame.
Поддерживает различные типы графиков и предлагает интуитивно понятный интерфейс для настройки визуализаций.
Интегрируется с Jupyter Notebooks.

👉Ссылка на репозиторий проекта

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
3
🖥 reCAPTCHAv2

Инструмент Python, который Решает 100% копти и превосходит показатели успешности предыдущих инструментов, которые составляли от 68% до 71%.

репо: https://github.com/aplesner/Breaking-reCAPTCHAv2
abs: https://arxiv.org/abs/2409.08831

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥31
This media is not supported in your browser
VIEW IN TELEGRAM
🦙 LlamaCoder — веб-приложение с открытым исходным кодом, которое может генерировать целое приложение из промпта.

Репозиторий уже был клонирован сотнями разработчиков на GitHub и отмечен более 2 тысяч раз.

➡️ https://llamacoder.together.ai

Подробнее об этом проекте ➡️ https://go.fb.me/p5o0x0

@machinelearning_ru
👍11🔥43
Разница между GPT-4o и o1. 😁

@machinelearning_ru
😁22🔥61🥰1
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Хакинг: t.me/linuxkalii
Devops: t.me/devOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc


💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://xn--r1a.website/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://xn--r1a.website/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://xn--r1a.website/addlist/BkskQciUW_FhNjEy
👍31
📍 Awesome-LiDAR-Visual-SLAM

LiDAR-Visual SLAM сочетает в себе преимущества лидарных датчиков для обеспечения высокоточной и надежной локализации местности и картографирования.

Github

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 GVHMR: World-Grounded Human Motion Recovery via Gravity-View Coordinates

Модель, которая позволяет точно оценить движения человека , которые легко переносятся в VR.

Код: https://github.com/zju3dv/GVHMR
HuggingFace: https://huggingface.co/spaces/LittleFrog/GVHMR1300
🔥61👍1
⚡️ Похоже, это самая большая в мире открытая коллекция лор

Более 500 лор.

@machinelearning_ru
7👍2🔥1
Forwarded from Machinelearning
⚡️ Vikhr: новые модели на 12B и 8B для русского языка с уникальным методом выравнивания.

Vikhr Team — сообщество энтузиастов, занимающихся созданием и развитием русифицированных LLM, выпустили две новые модели, оптимизированные для русского языка в задачах генерации кода, решения математических задач, обобщения, ответов на вопросы и построения логических выводов. Обе модели адаптированы для RAG и могут выступать реранкером на уровне LLM.

▶️ Vikhr-Nemo-12B-Instruct-R-21-09-24 — инструктивная модель на базе Mistral-Nemo-Instruct-2407 с 12 млрд. параметров и контекстным окном в 128К токенов.
В бенчмарке Ru-Arena General, Vikhr-Nemo-12B-Instruct-R-21-09-24 достигла результата в 79.8, уступая только двум моделям семейства GPT-4 .

🟢Версии квантования Vikhr-Nemo-12B-Instruct-R-21-09-24 в разрядности от 3-bit (6.08 Gb) до 16-bit (24.5 GB) в GGUF формате.

▶️ Vikhr-Llama3.1-8B-Instruct-R-21-09-24 — инструктивная модель на базе Meta-Llama-3.1-8B-Instruct с 8 млрд. параметров, контекстным окном в 128К токенов. В Ru-Arena General она показала значение winrate 63.4. По словам Vikhr Team — это лучший результат среди 8B моделей с поддержкой русского языка.

🟠Версии квантования Vikhr-Llama3.1-8B-Instruct-R-21-09-24 в разрядности от 3-bit (4.02 Gb) до 16-bit (16.1 GB) в GGUF формате.

Для файнтюна базовых моделей Mistral-Nemo-12B и Llama-3.1-8B, Vikhr Team разработали уникальный метод выравнивания — Simple Margin Preference Optimization (SMPO).

Он представляет собой микс из техник, заимствованных из CRLFT, IPO и SimPO, с добавлением своей функции потерь. Метод опубликован в репозитории на GitHub в комплекте тулкита скриптов и конфигураций, использовавшихся для обучения представленных моделей.

В процессе обучения моделей использовался кастомный SFT-датасет GrandMaster-PRO-MAX, собранный Vikhr Team самостоятельно, для следования самым разным наборам инструкций на разных языках (в основном на русском) и отвечать также - на русском языке. В него была включена CoT-способность.


📌Лицензирование : Apache 2.0 License.



🟡Модель Vikhr-Nemo-12B-Instruct
🟡Модель Vikhr-Llama3.1-8B-Instruct
🟡GGUF Vikhr-Nemo-12B-Instruct
🟡GGUF Vikhr-Llama3.1-8B-Instruct
🟡Датасет
🟡Demo Vikhr-Nemo-12B-Instruct
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Vikhr
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥3👍2
⚡️Converting a From-Scratch GPT Architecture to Llama 2

Хотите посмотреть сравнение GPT и Llama под капотом?

Здесь пошаговый учебник-гайд с кодом, где разобраны ключевые различия:

Github


@machinelearning_ru
👍62🔥2
📌 Mini-Omni: Языковые модели, которые могут слышать и говорить, одновременно думая в онлайн режиме

https://huggingface.co/spaces/gradio/omni-mini

@machinelearning_ru
7🔥1
Forwarded from Machinelearning
🌟 Параллельные стратегии с Jax: обучающий туториал.

Обучение LLM требует огромных вычислительных ресурсов. Поскольку размеры моделей исчисляются миллиардами параметров, специализированные методы распараллеливания необходимы для того, чтобы сделать обучение выполнимым.

В статье "Исследование параллельных стратегий с Jax" подробно рассматривается реализация некоторых стратегий масштабирования в Jax - фреймворке Python, предназначенном для высокопроизводительных численных вычислений с поддержкой ускорителей GPU и TPU.

Стратегии, описанные в туториале с примерами кода и иллюстрациями:

🟢Data Parallelism - распределение данных между несколькими устройствами, которые одновременно обучают модель;  

🟢Tensor Parallelism - распределение весов модели между устройствами, позволяет каждому устройству обрабатывать свою часть тензора параллельно; 

🟢Pipeline Parallelism разделяет модель на этапы, которые выполняются последовательно на разных устройствах; 

🟢Mixture-of-Experts использует множество специализированных экспертов для обработки различных частей входных данных, что позволяет масштабировать модель до огромных размеров.


▶️ Автор статьи - Александр Самарин, Lead ML Engineer в Huawei c 5-ти летнем опытом в глубоком обучении.


@ai_machinelearning_big_data

#AI #ML #LLM #JAX #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
🖥 CUDA Programming Course – High-Performance Computing with GPUs

Свежий Бесплатный курс от freeCodeCamp по программированию CUDA.

Этот 12 -ти часовой бесплатный курс научит вас программировать с помощью Nvidia CUDA и использовать графические процессоры для высокопроизводительных вычислений и Deep learning.

Содержание:
🔜 (0:00:00) Вступление
🔜 (0:16:52) Глава 1 (Экосистема глубокого обучения)
🔜 (0:37:43) Глава 2 (Настройка CUDA)
🔜 (0:47:03) Глава 3 (Обзор C/C++)
🔜(1:35:47) Глава 4 (Введение в графические процессоры)
🔜 (1:51:40) Глава 5 (Написание ваших первых ядер)
🔜 (3:55:26) Глава 6 (CUDA API)
🔜 (5:35:22) Глава 7 (Быстрое умножение матриц)
🔜 (8:22:36) Глава 8 (Triton)
🔜 (9:04:43) Глава 9 (Расширения PyTorch)
🔜 (9:18:10) Глава 10 (Многослойный персептрон MNIST)
🔜 (11:41:13) Глава 11 (Что изучать дальше?)
🔜 (11:54:38) Заключение

Video: https://www.youtube.com/watch?v=86FAWCzIe_4
Code: https://github.com/Infatoshi/cuda-course
Github https://github.com/Infatoshi/mnist-cuda

#cuda #deeplearning #cpp #c #bigdata #courses #бесплатныйкурс

@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍53🎉2🤩2👏1