Машинное обучение RU
17.7K subscribers
1.58K photos
210 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
🚀 Как обучать LLM с Unsloth + Docker

Unsloth — это open-source фреймворк, который упрощает и ускоряет fine-tuning и RL для больших языковых моделей.

🧰 Основные шаги

1. Использование Docker-образа Unsloth
Вместо ручной установки всех зависимостей можно запустить подготовленный контейнер unsloth/unsloth, где уже настроены все инструменты.

2. Запуск внутри контейнера
Внутри контейнера вы загружаете модель (например, LLaMA, Phi, Mistral и др.) и применяете Unsloth для обучения или дообучения (fine-tuning).

3. Конфигурация fine-tuning
Используются подходы вроде LoRA / QLoRA, gradient checkpointing, quantization и др., которые минимизируют потребление памяти и ускоряют обучение.

4. Запуск обучения и оптимизация
После настройки данных, модели и конфигурации запускается процесс обучения, при этом Unsloth оптимизирует внутренние операции, используя свои ядра и ускорение.

Почему стоит попробовать

- Упрощённый workflow: Docker избавляет от проблем с зависимостями
- Эффективность: меньше затрат по памяти и времени благодаря оптимизациям
- Совместимость: работает с популярными моделями, quantization, адаптирует существующие пайплайны

#LLM #Docker #AI #Unsloth

https://docs.unsloth.ai/new/how-to-train-llms-with-unsloth-and-docker
🔥52
Forwarded from Machinelearning
✔️ Ming-UniAudio - универсальный инструмент для работы с речью.

Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark

✔️ Свежий бесплатный курс по нейросетям от Эндрю Ына и Стэнфорда

Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.

В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.

Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание

✔️ AI-инфраструктура тянет экономику США: 40% роста ВВП и триллионы инвестиций впереди

Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.

UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.

По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.

Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X

✔️ Alpha School: в Техасе открылась школа, где учителей заменил ИИ

Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.

Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.

Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews

✔️ ИИ помог Теренсу Тао найти контрпример в математике

Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.

У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.

Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.

Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
Forwarded from Machinelearning
🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля

В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:

> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)

Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.

💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.

Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.

Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).

А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K

🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.

🟠GitHub:https://github.com/karpathy/nanochat
🟠Технические детали: https://github.com/karpathy/nanochat/discussions/1

@ai_machinelearning_big_data


#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥94👍1
⚡️ Microsoft представила новый стандарт оценки ИИ для кибербезопасности - ExCyTIn-Bench

Microsoft запустила ExCyTIn-Bench - открытую платформу, которая тестирует, как ИИ справляется с реальными инцидентами безопасности, а не просто отвечает на теоретические вопросы.

Что делает ExCyTIn-Bench

- Имитация настоящего SOC (Security Operations Center) с логами, инцидентами и хаосом реальных атак.
- Проверяет не только ответы, но и логику рассуждений ИИ: шаги, объяснения, приоритизацию угроз.
- Включает 57 таблиц логов из Microsoft Sentinel — максимально приближено к практике.
- Поддерживает сравнение разных моделей и метрик, включая reasoning-оценку (пошаговое мышление).

Зачем это нужно

Обычные тесты “вопрос-ответ” не отражают реальную сложность киберугроз.
ExCyTIn-Bench поднимает планку: теперь модели должны мыслить как аналитики SOC.

Microsoft уже использует этот бенчмарк для проверки своих продуктов — Security Copilot, Defender и Sentinel.
Первые результаты показывают, что продвинутые LLM вроде GPT-5 уже уверенно анализируют инциденты и выстраивают цепочку атак.

🔗 Подробнее: https://www.microsoft.com/en-us/security/blog/2025/10/14/microsoft-raises-the-bar-a-smarter-way-to-measure-ai-for-cybersecurity/


#Microsoft #CyberSecurity #AI #SecurityCopilot
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Новинка от ByteDance: модель Video-As-Prompt Wan2.1-14B

ByteDance выпустила модель Wan2.1-14B, специализирующуюся на задаче *video-as-prompt*, то есть использование видео или комбинации изображений и текста как входных данных для генерации нового видео.

- Работает в режимах «видео → видео» или «изображения/текст → видео».
- 14 млрд параметров — высокая детализация, плавная динамика, реалистичные движения.
- Использует исходное видео как шаблон стиля и композиции.

⚠️ Что стоит учитывать
- Модель требует мощных GPU и большого объёма памяти.
- Качество результата зависит от сложности запроса и длины видео.

🟠Github: https://github.com/bytedance/Video-As-Prompt
🟠HF: https://huggingface.co/ByteDance/Video-As-Prompt-Wan2.1-14B

@ai_machinelearning_big_data


#AI #VideoGeneration #ByteDance #Wan2 #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
Компании всё чаще переносят ИИ-модели в облако

В России растет тренд на использование генеративных нейросетей в облачной инфраструктуре. Облака дают больше инструментов для интеграции ИИ, упрощают масштабирование и делают внедрение экономически выгодным.

Yandex AI Studio — пример этой тенденции: платформа объединяет более 20 моделей и позволяет запускать AI-агентов и RAG-сценарии без программирования. С начала 2025 года спрос на генеративные модели на платформе вырос в 5 раз, ежемесячно там тратят десятки миллиардов токенов — показатель общего роста доверия бизнеса к облачным AI-решениям. Что характерно – на первом месте по потреблению YandexGPT, но около 30% трафика уже занимает Qwen3-235b, которую используют для агентских сценариев.

🔗 Подробнее здесь: https://www.vedomosti.ru/technology/news/2025/10/27/1150016-godovaya-viruchka

#AI #GenerativeAI #Agents #RAG
😁32👍1
Mental Models — тогда и сейчас 🧠

В 2007-м нейросети только учились подражать мозгу.
В 2025-м — учёные уже *буквально* создают его цифрового двойника.

1️⃣ E11 Bio сегодня баркодирует *каждую клетку мозга*, определяя тип нейрона и его форму по экспрессируемым белкам.
С помощью expansion microscopy — они “раздувают” мозговые ткани изнутри, чтобы легче проследить связи под микроскопом.

👉 Цель — создать точную 3D-карту мозга, где видно не только нейроны, но и химические градиенты, каннабиноиды, вирусоподобные частицы и внеклеточный матрикс, который становится более гибким под действием психоделиков (работа Gul Dolen).

Вопрос остаётся открытым: *сколько сложности нужно, чтобы реально смоделировать состояние мозга?*

2️⃣ 2007 год.
Тогда энтузиасты строили нейромодели на первых NVIDIA GPU. Один из них создал самодельный суперкомпьютер за $2000, чтобы моделировать рост дендритов и формирование связей в коре мозга.
Каждая точка — сотни потенциальных соединений, каждая ветвь — вычислительный узел.

3️⃣ На старых схемах — RC-цепочки, дифференциальные уравнения и дендрит как *коаксиальный кабель*:
ионы внутри, липидная оболочка снаружи, мембранная ёмкость, сопротивление, ионные каналы, создающие нелинейную динамику.
Сигнал передаётся не потоком электронов, а *каскадом открывающихся каналов*, как пальцы на длинной флейте.

🧩 Вывод: дендрит — это не просто «провод», а самостоятельный вычислительный элемент.
И даже спустя почти 20 лет, мозг всё ещё остаётся самым загадочным суперкомпьютером из всех.

#neuroscience #AI #mentalmodels #brainmapping #E11Bio #LLM
4👍2
🤖 WorldVLA - объединение VLA и World Model в единое автогенеративное ядро

Alibaba представила WorldVLA, новый шаг к созданию *авторегрессионной модели мира действий*
где одна архитектура одновременно предсказывает следующие кадры и действия агента.

🧠 Ключевая идея
WorldVLA объединяет Vision-Language-Action (VLA) и World Model в одном трансформере:
- Вход: *(image + language + action)*
- Выход: *(image + language + action)*
То есть модель не только «понимает» физику мира, но и «учится действовать» в нём.

⚙️ Как это работает
- Архитектура: единый Transformer, обучаемый одновременно на данных action-моделей и world-моделей.
- Лосс: комбинированная функция, объединяющая предсказание действий и состояния мира.
- Трюк с attention mask: маскируются предыдущие действия при генерации текущих —
этот приём значительно улучшает качество «action-chunk» генерации.

📊 Результаты
Тестировалось в симуляции (LIBERO benchmark):
WorldVLA превзошла отдельно обученные action-модели и world-модели.

💬 По сути, Alibaba делает следующий шаг к AGI-агентам с реальным пониманием физики,
где одно ядро может предсказывать, воспринимать и действовать — как единая система.

📄 Paper: https://arxiv.org/abs/2506.21539
💻 Code: https://github.com/alibaba-damo-academy/WorldVLA

#AI #WorldModel #VLA #DeepLearning #Alibaba #Transformers
4🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Lambda AI заключила многомиллиардную сделку с Microsoft.

Облачный стартап Lambda объявил о многомиллиардном соглашении с Microsoft на создание новой инфраструктуры для ИИ. Она будет оснащена десятками тысяч чипов Nvidia, в частности системами NVIDIA GB300 NVL72. Точная сумма сделки не раскрывается.

Lambda была основана в 2012 году и специализируется на облачных сервисах для обучения и развертывания ИИ-моделей. Новое соглашение позволит ей значительно нарастить мощности на фоне растущего спроса на ИИ. В планах не только аренда дата-центров, но и строительство собственной инфраструктуры.
lambda.ai

✔️ Alibaba представила превью Qwen3-Max-Thinking.

Китайский техногигант выпустил предварительную ризонинг-версию своей топовой модели Qwen3-Max, которая все еще находится на стадии обучения. Модель показала в тестах стопроцентный результат на сложных бенчмарках для оценки логического мышления (AIME 2025 и HMMT).

Под капотом - 1 трлн. параметров на архитектуре MoE, так же как и в родительской Max, Alibaba обещает, что обучение будет продолжено. Попробовать превью уже можно в Qwen Chat и через API Alibaba Cloud.
Qwen в сети X

✔️ Granite 4.0 Nano: семейство компактных моделей от IBM.

IBM опубликовала новое семейство открытых моделей Granite 4.0 Nano, которые созданы для работы в составе ИИ-агентов. Версия на 350 млн. параметров может работать на обычном CPU с 8–16 ГБ ОЗУ, а для варианта на 1,5 млрд. хватит GPU с 6-8 ГБ видеопамяти.

Семейство построено на гибридной архитектуре Mamba-2+Transformer, что позволило снизить потребление памяти на 70% и удвоить скорость инференса по сравнению с аналогами. По словам IBM, Granite 4.0 Nano показывают SOTA в следовании инструкциям и использовании инструментов. Все модели под Apache 2.0 и доступны на HuggingFace.
huggingface.co

✔️ Huxley-Gödel Machine: ИИ-агент, способный эволюционировать.

В Университете KAUST создали ИИ-агента Huxley-Gödel Machine (HGM), который может самосовершенствоваться, изменяя собственный код. Система не затрагивает ядро языковой модели, а переписывает окружающую ее инфраструктуру: управляющую логику, скрипты и инструменты.

Главное отличие от конкурентов в фокусе на долгосрочной продуктивности, а не на результатах в бенчах. Для этого был создан показатель Clade Metaproductivity (CMP), который мониторит совокупную эффективность всех потомков агента.

В тесте SWE-Bench Verified, HGM-агент на базе GPT-5-mini решил 61.4% проблем. Это лучше, чем существующие агенты с той же моделью. Код агента доступен на Github.
arxiv.org

✔️ Skyfall-GS: генератор 3D-моделей городов по спутниковым снимкам.

Skyfall-GS способна создавать детализированные и проходимые 3D-модели городов, используя только стандартные спутниковые изображения. В отличие от старых методов, которые могут воссоздать лишь крыши, Skyfall-GS генерирует недостающие элементы, что на выходе дает фотореалистичные городские пространства.

Пайплайн состоит из 3D Gaussian splatting (базовый 3D-каркас города) и диффузионных моделей, которые дорисовывают недостающие элементы (стены зданий и текстуры на уровне земли).

Skyfall-GS работает с 11 FPS на потребительском GPU и, по тестам, лучше аналогичных методик. Код проекта опубликован на GitHub.
skyfall-gs.jayinnn.dev

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍2👏1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ США запускают национальный проект для искусственного интеллекта.

Президент США подписал указ о создании единой государственной ИИ-платформы. Проект, реализация которого поручена Министерству энергетики, должен радикально ускорить научные исследования и сократить циклы открытий в биотехнологиях и энергетике с нескольких лет до дней.

Инициатива мобилизует инфраструктуру 17 федеральных исследовательских центров. Их суперкомпьютеры и накопленные за десятилетия массивы научных данных будут использованы для обучения специализированных моделей. Новая платформа позволит ИИ-агентам автономно планировать эксперименты, проверять гипотезы и генерировать прогнозы в области химии, биологии и инженерии.
whitehouse.gov

✔️ OpenAI объединила голосовой и текстовый режимы в ChatGPT.

ChatGPT получил обновление, которое устраняет барьер между способами ввода: голосовой чат теперь интегрирован непосредственно в основное окно переписки. Это позволяет пользователям бесшовно переключаться между речью и набором текста, не переходя в отдельный режим.

Теперь во время голосовой сессии можно свободно просматривать историю сообщений, сгенерированные изображения или карты, а ответы ассистента автоматически дублируются в текстовом виде.

Функция уже доступна в мобильных приложениях и веб-версии. Для тех, кто хочет пользоваться голосовым интерфейсом отдельно, OpenAI оставила возможность вернуть его через настройки в разделе Voice Mode.
OpenAi в сети Х

✔️ Microsoft выпустила модель для управления компьютером.

Fara-7B — компактная агентная модель от Microsoft Research на базе Qwen2.5-VL для автономной работы с интерфейсами. Модель умеет анализировать скриншоты, генерировать команды для мыши и клавиатуры, предсказывая точные пиксельные координаты.

В бенчмарках Fara-7B обошла существующие решения и выполняет задачи в разы дешевле крупных моделей - средняя стоимость сессии составляет меньше 3-х центов. Веса модели опубликованы на Hugging Face под лицензией MIT.
microsoft.com

✔️ В Гарварде разработали модель для диагностики редких генетических заболеваний.

Гарвардская медшкола представила popEVE - нейросеть, способную с высокой точностью выявлять патогенные мутации в геноме для решения проблем диагностики редких наследственных болезней, причины которых врачи зачастую не могут найти годами.

PopEVE объединяет генеративный ИИ с языковой моделью для белков и статистикой человеческих популяций. Система умеет корректно сравнивать опасность мутаций, расположенных в абсолютно разных генах, и выдавать унифицированный клинический рейтинг риска. Предыдущие модели не справлялись с такой кросс-генной калибровкой.

Эффективность системы подтвердили на выборке из 30 000 пациентов. Модель успешно определила причину болезни в трети случаев и попутно обнаружила 123 гена, ранее не связывавшихся с развитием патологий.
harvard.edu

✔️ Grok 5 сразится с чемпионами League of Legends в 2026 году.

Илон Маск анонсировал амбициозный эксперимент: в 2026 году следующая версия модели xAI бросит вызов сильнейшим киберспортивным командам мира. Матч планируется не просто как шоу, а как критический тест на пути к AGI.

Для чистоты эксперимента инженеры введут жесткие технические ограничения, уравнивающие шансы. Модель не будет подключаться к API игры — она должна «смотреть» на монитор через камеру с имитацией обычного человеческого зрения. Скорость реакции и частоту кликов также лимитируют до физических возможностей человека. Предполагается, что Grok 5 освоит сложные механики MOBA-стратегии с нуля, опираясь только на чтение документации и самостоятельные эксперименты в ходе игры.
Elon Musk в сети Х

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ ШАД Яндекса начал обучать ученых.

В Школе анализа данных, где готовят специалистов по ИИ, началось обучение по применению ИИ в естественно-научных исследованиях. На программу подали заявки ученые из 37 регионов - больше всего запросов получили от экспертов в областях физики, медицины и химии. В итоге зачислили 50 молодых исследователей: от магистрантов до кандидатов наук из Москвы, Петербурга, Уфы, Иркутска, Владивостока и Екатеринбурга.

Участники изучают основы ИИ и сразу применяют инструменты в своих задачах. С каждой командой работает эксперт ШАДа: помогает выбрать методы и спланировать эксперимент. Если проекту нужны тяжелые вычисления, подключаются мощности Yandex Cloud.

✔️ ИИ научили считывать активность скрытых мышц кисти по видео.

Команда из Institute of Science Tokyo анонсировала фреймворк PianoKPM Net, способный с высокой точностью определять активность мышц рук без использования нательных датчиков. Обычно для этого требуется инвазивная и дорогая электромиография, но новая архитектура реконструирует паттерны мышечных сокращений, анализируя только видеозапись.

В основе системы - уникальный датасет, собранный на базе 12 часов игры профессиональных пианистов, где визуальные данные синхронизированы с реальными сигналами мышц. Технология превращает обычную камеру в диагностический инструмент, что важно для реабилитационной медицины, спортивной аналитики и создания продвинутых интерфейсов «человек-компьютер». Авторы планируют выложить датасет и модель в открытый доступ.
techxplore.com

✔️ ИИ-проект Джеффа Безоса купил стартап General Agents.

Project Prometheus поглотил разработчика агентного ИИ General Agents. Сделка прошла в закрытом режиме еще летом и сопровождалась переходом команды инженеров из DeepMind и Tesla в структуру Prometheus. Цель Prometheus: создание ИИ-систем для поддержки сложных производств автомобилестроения и космической отрасли.

Главный актив General Agents - технология Ace для автономного управления интерфейсами и приложениями. Хотя изначально Ace создавался для автоматизации рутинны на ПК, в рамках Prometheus эти наработки, судя по всему, будут масштабированы для индустриальных сценариев.
wired.com

✔️ OpenAI и Google резко ограничили лимиты в Sora и Nano Banana Pro.

Глава направления Sora в OpenAI Билл Пиблз сообщил, что бесплатные аккаунты теперь ограничены всего 6 видеогенерациями в сутки, так как текущие графические процессоры буквально плавятся от запросов. Это ограничение не выглядит временным: компания прямо предлагает докупать генерации по мере необходимости, хотя условия для подписчиков ChatGPT Plus и Pro пока остались прежними.

Google приняла аналогичные меры, урезав бесплатный доступ к инструменту Nano Banana Pro до 2 изображений в день. Техгигант предупредил, что лимиты могут меняться динамически и без уведомлений. Кроме того, под ограничения попал и доступ бесплатных пользователей к модели Gemini 3 Pro.
theverge.com

✔️ Perplexity добавила функцию долгосрочной памяти.

ИИ-поисковик получил функцию "persistent memory", которая позволяет запоминать предпочтения, интересы и детали предыдущих диалогов. Теперь система автоматически создает "постоянный контекст" пользователя, а ответы становятся персонализированными и требуют меньше уточняющих запросов.

Perplexity извлекает факты из хранилища памяти и напрямую использует их при формировании ответа. Этот контекстный слой работает поверх любой выбранной модели без потери накопленных знаний о пользователе. Функция полностью управляема: сбор данных можно отключить в настройках, а в режиме инкогнито история не сохраняется.
perplexity.ai

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍1🔥1
🚀 AWS представила новое поколение AI-инструментов: Amazon Nova 2 и Agentic-AI

✔️ Nova 2 - семейство мощных моделей для текста, изображений, видео и мультимодальных задач
✔️ Nova Act - AI-агенты, которые могут работать в браузере: кликать, заполнять формы, навигироваться по UI
✔️ Nova Forge — сервис для создания собственных моделей на базе Nova: пред-тренировка, дообучение, кастомизация

Почему это важно
- Универсальность: от чат-ботов до анализа видео и документов
- Автоматизация: агенты заменяют рутинные действия и ручные процессы
- Кастомизация: компании могут строить модели под свои данные
- Оптимальная цена-производительность: конкурент на рынке крупных моделей

#AI #AWS #AmazonNova #GenerativeAI #AgenticAI #Automation

https://www.aboutamazon.com/news/aws/aws-agentic-ai-amazon-bedrock-nova-models
Forwarded from Machinelearning
⚡️ Mistral AI выпустила Devstral 2.

Компания представила сразу 2 версии модели для кодинга: флагманскую Devstral 2 (123 млрд. параметров) и облегченную Devstral Small 2 (24 млрд).

Старшая модель выбила 72,2% в бенчмарке SWE-bench Verified, закрепив за собой статус одного из лучших инструментов с открытыми весами.

Благодаря контекстному окну в 256k токенов, алгоритм способен удерживать в памяти структуру больших проектов и корректно управлять зависимостями.

Для локального запуска на GPU или CPU подойдет версия Small 2, опубликованная под лицензией Apache 2.0.

Старшая версия требует серьезного железа (от 4-х H100), но обещает быть до 7 раз экономичнее проприетарных аналогов уровня Claude Sonnet.

Вместе с моделями разработчики анонсировали утилиту Mistral Vibe CLI, которая позволяет внедрять ИИ-агентов непосредственно в терминал для автоматизации рефакторинга и оркестрации изменений сразу в нескольких файлах.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Science Context Protocol: научное расширение стандарта MCP.

Шанхайская лаборатория ИИ выложила в опенсорс спецификации SCP — протокола, созданного для формирования глобальной сети автономных исследовательских систем. Новинка развивает идеи стандарта MCP от Anthropic, добавляя к нему критически важный слой для взаимодействия с физическим миром науки.

В отличие от MCP, ориентированного на подключение данных, SCP поддерживает подключение лабораторного оборудования, расширенные метаданные экспериментов и API для оркестрации сложных рабочих процессов.

Фактически это позволяет ИИ-агентам напрямую управлять приборами и обмениваться результатами между различными институтами. Технология уже обкатана на платформе Internal Discovery, где доступно более 1600 инструментов, преимущественно для биологии, физики и химии.
arxiv.org

✔️ OpenAI переводит производство своего первого гаджета на заводы Foxconn.

Компания Сэма Альтмана меняет стратегию выпуска дебютного аппаратного устройства под кодовым именем «Gumdrop». По данным Economic Daily News, OpenAI отказалась от услуг китайской Luxshare и передала контракт тайваньскому гиганту Foxconn, чтобы исключить материковый Китай из цепочки поставок - сборка будет развернута на мощностях во Вьетнаме или США.

Gumdrop находится на стадии проектирования и, вероятно, это будет умная ручка или носимый аудио-гаджет. Устройство получит камеру и микрофон, а его киллер-фичей станет нативная интеграция с ChatGPT для оцифровки и анализа рукописных заметок.
Релиз устройства запланирован на 2026–2027 годы.
money.udn.com

✔️ Попытка главы Microsoft защитить репутацию ИИ обернулась вирусным трендом «Microslop».

Сатья Наделла непреднамеренно спровоцировал имиджевый кризис, опубликовав в конце 2025 года призыв к обществу «перерасти» использование термина «slop» в отношении генеративного контента. Реакция сообщества оказалась мгновенной: эффект Стрейзанд вывел в тренды тег «Microslop», ставший символом отторжения агрессивной политики компании по повсеместному внедрению ИИ.

Пользователи выражают недовольство тем, что Microsoft принудительно встраивает Copilot в каждый продукт, игнорируя реальные потребности аудитории. Пока руководство Big Tech обещает глобальные прорывы, рынок фиксирует негативные побочные эффекты: от дефицита и удорожания памяти и сокращения рабочих мест до засорения экосистемы бесполезными функциями.
windowscentral.com

✔️ Neuralink запускает серийное производство нейро-чипов.

Илон Маск подтвердил планы компании начать массовый выпуск интерфейсов «мозг-компьютер» в 2026 году. Технологический процесс станет полностью автономной хирургической процедурой: роботы будут устанавливать импланты без прямого участия людей-нейрохирургов.

Проект уже вышел за рамки лабораторных экспериментов - база пациентов с активными имплантами достигла 12 человек. Устройства позволяют людям с тяжелыми нарушениями моторики управлять цифровыми интерфейсами и игровыми контроллерами напрямую через нейронную активность.
reuters.com

✔️ Армия США ввела специальность по ИИ и ML для офицеров.

С 5 января Пентагон официально открыл прием заявок на новую специализацию, позволяющую офицерам строить карьеру в ИИ и ML. Приоритет при отборе отдается кандидатам с профильным образованием и опытом разработки.

Офицеры пройдут углубленную подготовку, после чего займутся созданием, развертыванием и поддержкой военных ИИ-систем. Инициатива реализуется на фоне жестких дедлайнов по внедрению ИИ-управления в штабах к 2027 году и обеспечению армии автономными системами до конца 2026 года.

Параллельно Минобороны США запустило платформу GenAi.mil с Gemini for Government на борту, чтобы предоставить армии доступ к передовым языковым моделям. Таким образом, ИИ перестает быть экспериментальным направлением и становится штатной функцией офицерского состава.
federalnewsnetwork.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥1