AB-MCTS (Adaptive Branching Monte Carlo Tree Search) — новый алгоритм масштабирования во время инференса, который обеспечивает коллективный интеллект для ИИ, позволяя нескольким передовым моделям (например, Gemini 2.5 Pro, o4-mini и DeepSeek-R1-0528) сотрудничать.
Sakana AI вдохновилась принципами коллективного интеллекта, где лучшие решения достигаются через объединение разнообразных мнений.
Каждая модель обладает своими сильными сторонами и уникальными свойствами, которые алгоритм использует в качестве ресурсов для совместного решения задач.
Ключевые особенности AB-MCTS:
• Коллективное сотрудничество моделей — алгоритм объединяет предложения разных моделей, выбирает наиболее многообещающие варианты и проверяет их через симуляции.
• Адаптивное ветвление — дерево поиска расширяется динамически там, где это приносит наибольшую пользу.
• Высокая эффективность на ARC-AGI-2 — комбинация o4-mini, Gemini 2.5 Pro и R1 0528 показывает значительный прирост по сравнению с каждой моделью в отдельности.
Авторы приводят следующие результаты работы алгоритма на 120 задачах ARC-AGI-2:
• Repeated Sampling (o4-mini): 23,0 % решённых задач
• AB-MCTS (o4-mini): 27,5 % решённых задач (абсолютный прирост +4,5 п.п., относительный +19,6 %)
• Multi-LLM AB-MCTS (o4-mini + Gemini 2.5 Pro + DeepSeek-R1-0528): > 30 % решённых задач
Sakana AI пытается внедрять принципы эволюции и коллективного интеллекта в разработку передовых ИИ-систем, с целью воплотить командный подход человеческих экспертов в мире искусственного интеллекта.
• Исходный код TreeQuest (реализация алгоритма): https://github.com/SakanaAI/treequest
• Эксперименты на ARC-AGI-2: https://github.com/SakanaAI/ab-mcts-arc2
• Подробнее в блоге: https://sakana.ai/ab-mcts
• Статья: https://arxiv.org/abs/2503.04412
@ai_machinelearning_big_data
#Sakana #al #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍2🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Медиагигант TIME включил DeepMind в свой рейтинг TIME100-2025 в категории «Влияние в ИИ». Это отдельная категория признания пяти выдающихся компаний, которые внесли значимый вклад в развитие своих областей.
В 2024 году создатели AlphaFold из Google DeepMind получили Нобелевскую премию по химии, но помимо научных достижений, DeepMind активно развивает языковые общедоступные модели: Gemini 2.5 Pro до сих пор лидирует в тестах на «интеллект».
CEO Google DeepMind Демис Хассабис мечтает создать «универсального цифрового ассистента», способного не только помогать пользователям, но и проводить самостоятельные научные исследования.
time.com
15 европейских СМИ из 7 стран запустили Chat Europe, платформу на основе ИИ, которая обещает предоставлять новости о ЕС без дезинформации. Проект финансируется ЕС, использует модель Mistral и был разработан румынской компанией DRUID AI.
Пользовательские тесты показали проблемы: система часто ссылается на устаревшие данные и дает нерелевантные ответы. Например, запрос о ситуации в Германии выдал устаревшую информацию 2010 года, в то время как ChatGPT с веб-поиском - дал актуальный и всесторонний ответ.
Создатели чатбота заявляют непредвзятость сервиса и проверенные источники, но реальность пока не соответствует этим утверждениям. Эксперты ждут улучшений: если чатбот не научится отслеживать события в реальном времени, его польза останется под вопросом.
presseportal.de
OpenAI активно развивает консалтинговое направление для бизнеса, предлагая клиентам персонализацию моделей GPT-4o под их данные и разработку приложений - от чат-ботов до аналитических инструментов. За такие услуги компания запрашивает от $10 млн, ставя себя в один ряд с Palantir и Accenture.
Среди клиентов направления - Министерство обороны США и азиатский техногигант Grab. OpenAI явно стремится закрепиться не только как лаборатория для исследований, но и как партнер для масштабных внедрений.
theinformation.com
Huawei анонсировала открытый доступ к своей серии языковых моделей Pangu: компактной Pangu 7B и флагманской Pangu Pro MoE с 72 миллиардами параметров. Обе модели оптимизированы для инференса на чипах Ascend. Исходный код, веса и инструменты для работы с MoE-архитектурами уже доступны на платформе GitCode.
Разработчики получают возможность тестировать решения на чипах Huawei, что актуально в условиях санкций. Меньшая версия Pangu 7B в открытом доступе появится позже.
ecns.cn
Cloudflare начал блокировать ИИ-краулеры по умолчанию, теперь новые сайты автоматически получают опцию запрета сканирования без разрешения, а бета-версия сервиса Pay Per Crawl позволит монетизировать доступ.
Новый протокол идентификации ботов поможет сайтам отсеивать анонимных скраперов, требуя раскрытия целей сбора данных. Поддержку инициативе выразили крупнейшие медиахолдинги и цифровые площадки, они давно говорят о важности компенсации за использование контента.
cloudflare.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥2
🧠 Генеративный ИИ‑проект “под капотом”: всё на одном GitHub
Если вы хотите посмотреть, как собрать полноценную систему генеративного ИИ с нуля — обратите внимание на этот репозиторий:
📦 Внутри:
– Обработка изображений и текста
– Использование pre-trained моделей для генерации и анализа
– Интеграция с OpenAI API
– Отчёты, ноутбуки, визуализация результатов
– Чистая структура проекта: от данных до выводов
Подойдёт как учебный шаблон или стартовая база для своих экспериментов с мультимодальными ИИ‑сценариями.
https://github.com/HeyNina101/generative_ai_project
#generativeAI #opensource #ml #deeplearning
Если вы хотите посмотреть, как собрать полноценную систему генеративного ИИ с нуля — обратите внимание на этот репозиторий:
📦 Внутри:
– Обработка изображений и текста
– Использование pre-trained моделей для генерации и анализа
– Интеграция с OpenAI API
– Отчёты, ноутбуки, визуализация результатов
– Чистая структура проекта: от данных до выводов
Подойдёт как учебный шаблон или стартовая база для своих экспериментов с мультимодальными ИИ‑сценариями.
https://github.com/HeyNina101/generative_ai_project
#generativeAI #opensource #ml #deeplearning
👍5❤4🔥3
Forwarded from Machinelearning
Мaitrix Org разработали WM-ABench, бенчмарк для оценки VLM в качестве так называемых «моделей мира». Идея проста: проверить, насколько хорошо топовые модели способны не просто распознавать картинки, а понимать окружающую действительность и предсказывать ее изменения.
Создатели, опираясь на когнитивную науку, создали фреймворк, который тестирует 15 самых популярных моделей по 23 параметрам, разделяя процесс на 2 ключевых этапа: восприятие и прогнозирование.
В основе бенчмарка - огромный датасет из более чем 100 тысяч примеров, сгенерированных в 6 различных симуляторах, от ThreeDWorld и Physion до Carla.
Чтобы модели не искали легких путей и не полагались на поверхностные совпадения, в тест добавили «сложные негативы» - контрфактические состояния, которые заставляют систему действительно анализировать происходящее.
Весь процесс был разделен на оценку восприятия (распознавание объектов, пространства, времени, движения) и прогнозирования (симуляция физики, транзитивный и композиционный вывод). Для калибровки сложности задач были установлены базовые показатели, основанные на результатах людей.
С простым визуальным восприятием, то есть с определение цвета или формы, все модели справляются отлично. Однако когда дело доходит до трехмерного пространственного мышления, динамики движения или временных последовательностей, начинаются серьезные проблемы.
Выяснилась и другая любопытная деталь: VLM склонны «спутывать» физические понятия. Например, если в сцене изменить только цвет объекта, модель может внезапно ошибиться в оценке его размера или скорости.
Оказалось, что цвет и форма являются самыми влиятельными атрибутами, которые искажают восприятие других, не связанных с ними характеристик.
Точное восприятие мира совершенно не гарантирует точного прогноза.
Исследование показало, что даже при идеально верном распознавании текущего состояния сцены модели проваливают предсказание физических взаимодействий.
Разрыв с человеческими способностями явный: в задачах на транзитивный вывод он достигает 46%, а композиционный вывод выполняется на уровне случайного угадывания.
У современных VLM отсутствуют базовые знания физики, необходимые для симуляции даже простейших событий. Они видят мир, но не понимают, по каким законам он живет.
@ai_machinelearning_big_data
#AI #ML #VLM #Benchmark #Maitrix
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥5👍4