Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
📘 OpenAI выпустила GPT-5 Prompting Guide — руководство по созданию эффективных промтов
Что внутри:
- 🛠 Agentic workflows — как настраивать автономность модели и управлять глубиной размышлений (`reasoning_effort`).
- 📋 Tool preambles — структура работы с инструментами: цель, план, комментарии, итог.
- ⚡ Responses API — альтернатива Chat Completions для экономии токенов и улучшения качества.
- 💻 Кодинг — советы по интеграции в Next.js, React, Tailwind и оптимизации стиля кода.
- 🎯 Steering & verbosity — контроль длины и стиля ответа, избегание конфликтующих инструкций.
- 🚀 Minimal reasoning mode — быстрые задачи с чётким планом и приоритетами.
- 🔄 Метапромтинг — использование GPT-5 для улучшения собственных промтов.
Кому полезно:
Разработчикам агентных систем, AI-ассистентов и всем, кто хочет выжать максимум из GPT-5.
🔗 Полный гайд и примеры
#GPT5 #PromptEngineering #OpenAI #AI
Что внутри:
- 🛠 Agentic workflows — как настраивать автономность модели и управлять глубиной размышлений (`reasoning_effort`).
- 📋 Tool preambles — структура работы с инструментами: цель, план, комментарии, итог.
- ⚡ Responses API — альтернатива Chat Completions для экономии токенов и улучшения качества.
- 💻 Кодинг — советы по интеграции в Next.js, React, Tailwind и оптимизации стиля кода.
- 🎯 Steering & verbosity — контроль длины и стиля ответа, избегание конфликтующих инструкций.
- 🚀 Minimal reasoning mode — быстрые задачи с чётким планом и приоритетами.
- 🔄 Метапромтинг — использование GPT-5 для улучшения собственных промтов.
Кому полезно:
Разработчикам агентных систем, AI-ассистентов и всем, кто хочет выжать максимум из GPT-5.
🔗 Полный гайд и примеры
#GPT5 #PromptEngineering #OpenAI #AI
❤7👍4🔥2
Forwarded from Machinelearning
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие
singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле. Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты:
03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью). В другом тесте, где нужно было сосчитать количество букв
D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7. При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ
я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата
я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг
singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.@ai_machinelearning_big_data
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🤔1