Gated DeltaNet - экспериментальная архитектура, разработанная NVIDIA для управления памятью в контексте линейных трансформеров, которая может решить проблемы с забыванием в моделях, обрабатывающих длинные последовательности данных.
Gated DeltaNet предлагает использовать одновременно дельта-правило и гейтинг. Дельта-правило обновляет память модели, заменяя устаревшую информацию на новую, а механизм гейтинга удаляет ненужную информацию из памяти, чтобы она не мешала модели работать эффективно.
Архитектура Gated DeltaNet была разработана на основе алгоритма, который параллелит вычисления дельта-правила с использованием представления WY и оптимизирует работу с GPU на уровне тензорных ядер.
Перфоманс-тестирование Gated DeltaNet проводилось на бенчмарках языкового моделирования, ризонинга, контекстного извлечения, экстраполяции длины и понимания объемного контекста.
Модель Gated DeltaNet превзошла Mamba2 и DeltaNet на всех этих тестах. Например - улучшенная точность на задачах S-NIAH-2 и S-NIAH-3, где Gated DeltaNet показала более эффективное управление памятью по сравнению с DeltaNet и Mamba2 и превосходство в задачах ризонинга.
Гибридные архитектуры, сочетающие слои Gated DeltaNet с вниманием скользящего окна или слоями Mamba2 повысили эффективность обучения и производительность моделей.
Тестовые
GatedDeltaNet-H1 и GatedDeltaNet-H2 дали еще более высокие результаты, используя комбинации Gated DeltaNet + SWA и Mamba2 + Gated DeltaNet + SWA соответственно.Gated DeltaNet показала самые низкие показатели перплексии при экстраполяции на длинные последовательности до 20 тыс. токенов и продемонстрировала превосходные способности в извлечении информации, обучении в контексте и отслеживании состояния в задачах LongBench.
🔸Практическая реализация обучения Gated DeltaNet на Pytorch доступна в репозитории на Github
📌Лицензирование:
🟢Некоммерческое использование: Nvidia Source Code License-NC
🟠Коммерческое использование: по запросу через форму NVIDIA Research Licensing
🟡Arxiv
🟡GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #NVIDIA #GatedDeltaNet
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Minima — это open source решение для RAG в контейнерах для развертывания на любых мощностях (клауд или локал), с возможностью интеграции с ChatGPT и MCP.
Minima также может использоваться как RAG на вашей машине.
Minima поддерживает три режима работы:
1. Изолированная установка — Работа в контейнерах без внешних зависимостей, таких как ChatGPT или Claude. Все нейронные сети (LLM, ранкер, эмбеддинг) и векторный сторедж запускаются на вашем сервере или ПК, обеспечивая безопасность ваших данных.
2. Кастомный GPT — Запросы к вашим локальным документам через приложение или веб-версию ChatGPT с использованием кастомных GPT. Индексатор работает на вашем сервере или локальном ПК, а основная LLM остаётся ChatGPT.
3. Anthropic Claude — Использование приложения Anthropic Claude для запросов к вашим локальным документам. Индексатор работает на вашем локальном ПК, а основная LLM — это Anthropic Claude.
В данный момент, Minima решает задачу RAG on-premises и призывает всех поставить звезду и форкнуть репозиторий, а так же не стесняться и принять участие в разработке.
📌 Лицензия MPL-2.0
▪ Github
Minima также может использоваться как RAG на вашей машине.
Minima поддерживает три режима работы:
1. Изолированная установка — Работа в контейнерах без внешних зависимостей, таких как ChatGPT или Claude. Все нейронные сети (LLM, ранкер, эмбеддинг) и векторный сторедж запускаются на вашем сервере или ПК, обеспечивая безопасность ваших данных.
2. Кастомный GPT — Запросы к вашим локальным документам через приложение или веб-версию ChatGPT с использованием кастомных GPT. Индексатор работает на вашем сервере или локальном ПК, а основная LLM остаётся ChatGPT.
3. Anthropic Claude — Использование приложения Anthropic Claude для запросов к вашим локальным документам. Индексатор работает на вашем локальном ПК, а основная LLM — это Anthropic Claude.
В данный момент, Minima решает задачу RAG on-premises и призывает всех поставить звезду и форкнуть репозиторий, а так же не стесняться и принять участие в разработке.
📌 Лицензия MPL-2.0
▪ Github
Про-пользователи получат неограниченный доступ к o3-mini.
Бесплатные пользователи могут попробовать o3-mini в ChatGPT, выбрав кнопку Reason под сообщением.
Платные пользователи также могут выбрать o3-mini-high в меню выбора моделей, чтобы получить версию с более высоким уровнем интеллекта, которой требуется немного больше времени для ответов.
o3-mini превосходит предыдущие модели на бенчмарке GPQA Diamond, в математике (AIME) и в кодингке (Codeforces).
▪Chatgpt:
▪System Card
@ai_machinelearning_big_data
#openai #chatgp #ai #release #ml #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Stable Flow - метод редактирования изображений без предварительного обучения на основе flow-based моделей (FLUX).
Метод основывается на идее определения "жизненно важных слоев" в DiT, которые критически важны для формирования изображения. Эти слои определяются перебором слоев путем измерения отклонений в содержании изображения.
Редактирование изображения выполняется путем параллельной генерации, где признаки из траектории генерации исходного изображения инжектируются в траекторию редактируемого изображения. Такая стратегия раньше применялась в моделях на архитектуре UNet, теперь адаптирована для DiT.
Инъекция происходит только в vital layers, что дает стабильность редактирования, сохраняя нередактируемые области нетронутыми. Это дает возможность выполнять различные типы редактирования: нежесткие деформации, добавление объектов, замену объектов и изменение сцены, используя один и тот же механизм.
Для инпейнта реальных изображений применяется инверсия, выполняемая с помощью солвера Euler Ordinary Differential Equation (ODE), с добавлением метода "подталкивания" вне распределения. Этот метод заключается в небольшом скалярном возмущении чистого латентного пространства, что позволяет улучшить точность реконструкции и ограничить изменения в процессе редактирования.
Пользовательское исследование подтвердило, что Stable Flow превосходит SDEdit, P2P+NTI, Instruct-P2P, MagicBrush, MasaCTRL по 4 категориям: соответствие текстовому запросу, сохранение исходного изображения, реалистичность и общее качество редактирования.
⚠️ Для запуска кода Satble Flow необходим токен HuggingFace
⚠️ Проект поддерживает возможность CPU offload, он включается ключом
--cpu_offload при инференсе.# Clone repo
git clone https://github.com/snap-research/stable-flow.git
cd stable-flow
# Create conda env
conda env create -f environment.yml
conda activate stable-flow
# Batch image inference
python run_stable_flow.py \
--hf_token YOUR_PERSONAL_HUGGINGFACE_TOKEN \
--prompts "A photo of a dog in standing the street" \
"A photo of a dog sitting in the street" \
"A photo of a dog in standing and wearing a straw hat the street" \
"A photo of a mink"
# Image editing inference
python run_stable_flow.py \
--hf_token YOUR_PERSONAL_HUGGINGFACE_TOKEN \
--input_img_path inputs/bottle.jpg \
--prompts "A photo of a bottle" \
"A photo of a bottle next to an apple"
@ai_machinelearning_big_data
#AI #ML #StableFlow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Вводите промпт и ChatGPT найдет, проанализирует и синтезирует сотни онлайн-ресурсов, чтобы создать развернутый отчет за 10 минут работы, вместо нескольких часов, которые потребовались бы человеку.
Основные моменты:
— Уже доступен для пользователей Pro.
— Агент предоставит полный список источников, а также прокомментирует каждый из них;
— Хорошо подходит для решения задач, связанных с поиском в интернете.
— Набрал 26.6 % на «Последнем экзамене человечества».
ИИ превосходит существующие методы как по точности, так и по вычислительной эффективности, предлагая обновления прогнозов в реальном времени четыре раза в день через Google Cloud, BigQuery и Earth Engine.
Исследователи могут получить доступ как к текущим, так и к историческим прогнозам для анализа и планирования.
Внутри 2 мощных инструмента:
WeatherNext Graph:
- Формирует единый сверхточный прогноз.
- Обновления происходят каждые 6 часов.
- Предсказания делаются на 10 дней вперёд.
- Выдает прогнозы с максимальной точностью.
WeatherNext Gen:
- Генерирует ансамблевые прогнозы из 50 вероятных сценариев.
- Обновление прогноза происходит каждые 12 часов.
- Модель позволяет лучше оценивать риски экстремальных погодных явлений.
Преимущества над традиционными методами:
- Более высокая скорость обработки данных.
- Значительное повышение точности по сравнению с физическими моделями.
- Опенсорс
Внутри много интересного о DeepSeek, Китае, OpenAI, NVIDIA, xAI, Google, Anthropic, Meta, Microsoft, TSMC, Stargate, строительстве мегакластеров, RL, ризонинге и множестве других тем на передовых ИИ тематик.
Очень интересная и наполненная техническими деталями беседа.
- Новая модель: Qwen2.5-Plus теперь обновлен до qwen-plus-0125-exp, с новыми методами пост-тренинга. Разрыв с Qwen2.5-Max значительно сократился.
- Гибкие режимы: Убрали все ограничения на переключение между режимами в течение одной сессии! С.
- Неограниченный ввод: Поддержка текстов длиной более 10 000 символов
- Возможность загружайть файлы txt, pdf, docx, xlsx, pptx, md и другие. Теперь длинный ввод не требует усилий.
Резюме самых интересных открытий за первую неделю с момента появления DS.
Компания Reliance Group Мукеша Амбани, один из крупнейших и наиболее влиятельных индийских конгломератов, строит крупный центр обработки данных в Джамнагаре - небольшом городке в штате Гуджарат, где уже расположены крупные нефтеперерабатывающие и нефтехимические предприятия Reliance.
По сообщениям Bloomberg, общая мощность центра обработки данных, который может стать крупнейшим в мире, составит 3 гигаватта, что значительно увеличит текущую мощность индийских центров обработки данных, которая оценивается менее чем в 1 гигаватт.
Таким образом, он будет в пять раз больше, чем 600-мегаваттный центр Microsoft в Бойдтоне, штат Вирджиния.
Метахранилище - это высокомасштабируемый сервис метаданных во время выполнения, который работает с несколькими движками: BigQuery, Apache Spark, Apache Hive и Apache Flink, и поддерживает открытый формат таблиц Apache Iceberg
@ai_machinelearning_big_data
#DeepSeek #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #openai #google #deepmind #qwen #DataAnalytics #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Вышла еще одна реализация DeepResearch, на этот раз от команда hugging face.
За 24 часа разработчики воспроизвели DS и выложили исходный код своего агента!
Построен на базе CodeAgent. Самый большой буст в производительности удалось получить, когда разработчики разрешили агенту
писать свои действия в коде.
При переходе на стандартного агента, который пишет действия в JSON, а не в коде, производительность той же самой настройки мгновенно падает до 33 %.
▪ Блог: https://huggingface.co/blog/open-deep-research
▪Код: https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research
▪Demo: https://xn--r1a.website/codecamp/6819
#ai #ml #huggingface #hf #aiagent #llm #DeepResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
VideoLLaMA - это серия мультимодальных моделей (MLLM), разработанных для различных задач понимания изображений и видео!
Модели подойдут для создания универсальных приложений, способных решать широкий спектр задач, связанных с анализом визуальной информации.
🖐️Результаты 7B модели: DocVQA: 94,9, MathVision: 26,2, VideoMME: 66,2/70,3, MLVU: 73,0
🤏 Результаты 2B-модели для мобильных устройств: MMMU: 45.3, VideoMME: 59.6/63.4
▪ Github: https://github.com/DAMO-NLP-SG/VideoLLaMA3
▪Image Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3-Image
▪Video Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3
@ai_machinelearning_big_data
#video #MLLM #opensource #VideoLLaMA #VideoUnderstanding
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM