Машинное обучение digest
53 subscribers
1.59K photos
210 videos
832 links
Download Telegram
Главные новости ИИ и Машинного обучения

✔️ В Xcode завезли нативную поддержку Claude Agent SDK.

Apple выпустила Xcode 26.3, и главное в нем - глубокая интеграция с Claude Agent SDK. Возможности Claude Code перенесли в среду разработки: агент сам управляет задачами, запускает субагентов и поддерживает плагины.

Агент теперь видит не один открытый файл, а архитектуру всего проекта целиком и понимает, как связаны между собой SwiftUI, UIKit и Swift Data, сам составляет план действий и вносит правки. Claude научили пользоваться Xcode Previews и обращаться к документации Apple, если нужно разобраться в специфике API. Из полезных мелочей: добавили поддержку MCP, так что возможности Xcode теперь можно встроить в рабочий процесс через CLI.

Xcode 26.3 уже доступен в release candidate для участников программы Apple Developer.
anthropic.com

✔️ OpenAI ищет альтернативы чипам Nvidia.

OpenAI начала закупать железо у других поставщиков. Руководство компании не устраивает, как чипы Nvidia справляются с инференсом. Главная претензия - медлительность. GPU устроены так, что им постоянно приходится обращаться к внешней памяти. Для быстрого инференса этого уже мало — нужны чипы, где память находятся прямо внутри кристалла (SRAM).

Чтобы решить этот вопрос, OpenAI пытается договориться с Cerebras и присматривается к решениям от Groq, хотя с последним переговоры сорвались. В планах - перевести на альтернативное железо около 10% всех своих мощностей.

Самое интересное происходит на фоне затянувшихся переговоров с самой Nvidia. Сэм Альтман и Дженсен Хуанг на публике могут сколько угодно говорить о тесном партнерстве, но сделка на 100 млрд. буксует уже несколько месяцев.
reuters.com

✔️ SpaceX купила xAI.

Илон Маск решил собрать свои главные активы в один гигантский конструктор. SpaceX официально забирает под свое крыло xAI вместе с соцсетью X. По данным СМИ, сумма сделки составила $250 млрд. долларов, что увеличивает капитализацию всей структуры до $1,25 трлн и теперь SpaceX официально обходит OpenAI, становясь самым дорогим частным стартапом в мире.

Стратегия слияния - в создании монстра, где все работает в одной связке. В планах совсем уж футуристичные идеи: запустить дата-центры на орбиту, чтобы там ИИ обучался в космосе, питаясь чистой солнечной энергией без посредников.

В итоге получается гремучая смесь: данные пользователей из X, мозги от xAI и логистика со спутниками Starlink от SpaceX. И вся эта махина готовится к выходу на IPO.
spacex.com

✔️ Microsoft открывает рынок контента для обучения ИИ-агентов.

Microsoft запустила платформу Publisher Content Marketplace, где владельцы сайтов и СМИ могут напрямую продавать свои статьи ИИ-разработчикам. Теперь авторы могут сами выставлять ценник за использование своих материалов.

В проекте уже участвуют Associated Press, Condé Nast и Vox Media, а со стороны покупателей первым пришел Yahoo.Это первый масштабный маркетплейс - раньше каждой крупной компании приходилось договариваться с разработчиками ИИ по отдельности.
microsoft.com

✔️ В MIT научили процессоры считать на собственном тепловыделении.

Инженеры из MIT разработали кремниевые микро-структуры, которые превращают тепловые потери в ресурс для обработки данных. В основе лежит метод аналоговых вычислений: входная информация кодируется в виде температурных значений, а математическая операция выполняется в процессе диффузии тепла через специальный пористый материал.

Такая "тепловая математика" работает очень точно. Ученым удалось провести умножение матриц на векторы с точностью выше 99%. Чтобы добиться такого результата, форму и расположение пор в кремнии рассчитывали с помощью специальных алгоритмов.

Конечно, заменить видеокарты Nvidia для обучения ChatGPT эти чипы пока не смогут — есть вопросы к скорости передачи данных. Но у технологии есть крутое применение уже сейчас: датчики контроля оборудования.
mit.edu

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Qwen3-Coder-Next: агентная MoE-модель в линейке Qwen3-Coder.

Qwen3-Coder-Next — открытая MoE-модель на 80 млрд. общих и 3 млрд. активных параметров с контекстным окном в 256К токенов для агентных задач.

Модель учили через agentic training на 800 тыс. задачах, созданных из GitHub PR в реальных Docker-контейнерах, где она получала прямой фидбек от среды.

Это развило навыки планирования в ризонинге, использования инструментов и умение восстанавливаться после ошибок выполнения.

На претрейне расширили поддержку языков с 92 до 370, затем SFT на траекториях агентов, а потом - специализация экспертов (WebDev, QA, UX) с последующей дистилляцией в единую модель.

В конце, через RL подтянули в задачах кодинга и математики, используя юнит-тесты как сигнал вознаграждения.

Основной массив данных (те самые Docker-контейнеры) это по большей мере Python (202 тыс. инстансов) и JS/TS (175 тыс. инстансов). Для редких языков модель может чаще галлюцинировать, так как данных для RL и проверок через юнит-тесты там физически меньше.


🟡Бенчмарки

🟢70% на SWE-Bench Verified (используя SWE-Agent)
🟢44.3% на SWE-Bench Pro (почти как у топов)
🟢62.8% на SWE-Bench Multilingual (фикс багов на уровне репозитория на разных языках)

Модель все-таки ощутимо отстает от Claude 4.5 Opus на сверхсложных архитектурных задачах с большими кодовыми базами.

Иногда ей требуется слишком много итераций, чтобы нащупать верное решение и это вопросы к эффективности планирования.

Фронтенд и UI - слабое место (авторы признают), а в киберсек-задачах (поиск уязвимостей и TAA) модель пока не дотягивает до человеческого уровня.

Единственное, что спасает Qwen3-Coder-Next от забвения - это компактность и поддержка fill-in-the-middle для адекватного автодополнения кода в IDE.

Qwen обещают улучшать ризонинг, принятие решении и поддержку дополнительных задач на основе фидбэка пользователей.



📌Лицензирование:  Apache 2.0 License.


🟡Статья
🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #QwenCoderNext #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🚀 Вышла Kling 3.0 - “Everyone a Director”. Новый этап в ИИ-креативе.

Это универсальный движок для мультимодального создания контента - видео, изображений и аудио в одной системе.

Что появилось в версии 3.0:

- Высокая консистентность

Модель умеет “держать” персонажей, объекты и стиль неизменными от кадра к кадру. Лицо героя, одежда, детали сцены и визуальный стиль не “плывут” между шотами, что особенно важно для историй, сериалов, рекламы и сцен с несколькими ракурсами.

Можно создавать 15-секундные клипы с точным контролем, реалистичной картинкой и настройкой multi-shot сцен.

- Обновлённый звук
Поддержка референсов для нескольких персонажей, добавлено больше языков и акцентов.

- Улучшенная генерация изображений
Вывод в 4K, режим серий изображений и более кинематографичная визуальная подача.

Подписчики Ultra получают эксклюзивный ранний доступ - модель уже доступна в веб-версии Kling AI.

https://app.klingai.com/global/release-notes/whbvu8hsip?type=dialog
🧠 Google придумали способ сделать AI-модели быстрее и легче без потери точности

В новом исследовании Google представили подход под названием Sequential Attention.

Идея простая по смыслу, но мощная по эффекту - модель учится фокусироваться только на действительно важных частях вычислений, а всё лишнее постепенно отбрасывает.

Почему это вообще проблема

Современные нейросети огромные. Они:
- считают слишком много
- используют кучу признаков и параметров
- тратят много памяти и энергии

При этом далеко не всё, что модель обрабатывает, реально влияет на итоговый ответ.

Но определить заранее, что важно, а что нет - математически очень сложно.

Что делает Sequential Attention. Метод работает пошагово.

Вместо того чтобы сразу использовать всё, алгоритм:
1. Выбирает один самый полезный компонент
2. Смотрит, что уже выбрано
3. Добавляет следующий, который даёт наибольшую пользу
4. Повторяет процесс последовательно

То есть модель как будто собирает себя заново-— из самых значимых частей, а не из всего подряд.

Что это даёт на практике

- Меньше вычислений - модель работает быстрее
- Меньше нагрузка на память и железо
- Ниже энергопотребление
- И самое главное - точность почти не страдает

Это редкий случай, когда становится и быстрее, и дешевле, без серьёзных компромиссов по качеству.

Размеры моделей растут быстрее, чем инфраструктура. Поэтому ключевой тренд - не просто делать модели больше, а делать их умнее в плане вычислений.

Sequential Attention - это шаг в сторону “бережливого ИИ”, где:
- не каждая операция обязательна
- не каждый параметр нужен всегда
- модель учится экономить ресурсы сама

И чем крупнее системы, тем ценнее такие подходы.

https://research.google/blog/sequential-attention-making-ai-models-leaner-and-faster-without-sacrificing-accuracy/

@data_analysis_ml
🌟 ACE-Step v1.5: обновление локального генератора музыки.

Ace Studio в коллабе со StepFun обновили генератор музыки ACE-Step до версии 1.5.

Порог входа уронили до минимума: младшая модель требует меньше 6 ГБ видеопамяти, а, в зависимости от настроек think mode, генерация может занять от 2 до 10 секунд - это уже уровень коммерческих решений.

Разработчики собрали гибрид из языковой модели, которая превращает промпт в чертеж композиции: расписывает структуру, придумывает лирику и метаданные и DiT, который отвечает за звук. Логическое ядро всей этой системы базируется на Qwen3.

ACE-Step v1.5 может генерировать треки длиной от 10 секунд до 10 минут, причем до 8 штук одновременно. В базе больше 1000 инструментов, а тексты песен система понимает на 50 языках.

Авторы подготовили целый набор моделей под разный объем VRAM:

🟢Меньше 6 ГБ: без LM-модуля, работает только звуковой движок.

🟢6–12 ГБ: облегченная версия LM (0.6B).

🟢16 ГБ и выше: полноценная модель на 4 млрд. параметров, которая лучше всего понимает контекст и выдает максимум качества.

При запуске, ACE-Step v1.5 автоматически выбирает подходящую под железо модель и параметры. Подробную информацию по конфигурациям можно найти тут.

ACE-Step умеет гораздо больше, чем просто превращать текст в мелодию. Можно дать ей пример аудио, чтобы скопировать стиль, делать каверы, исправлять куски уже готовых треков или генерировать аккомпанемент к вокалу.


Самая интересная функция - возможность создавать LoRA. Чтобы скормить модели свой стиль, достаточно всего 8 треков. На 30-й серии RTX с 12 ГБ памяти этот процесс займет около часа.

С деплоем все в порядке, разработчики подготовили портабельную сборку, а для ComfyUI уже написали все необходимые ноды и воркфлоу.


📌Лицензирование:  MIT License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Text2Music #AceStudio #StepFun
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Вышел Protenix-v1 - первая open-source модель, заявляющая уровень качества AlphaFold 3

За релизом стоит ByteDance, и это серьёзная заявка на open-source в биоинформатике.

Что делает релиз интересным:

🔹 Качество на уровне AF3
Заявлена производительность уровня DeepMind AlphaFold 3, а это уже не просто академическая игрушка, а лига передовых структурных моделей.

🔹 Подтверждено scaling-поведение на инференсе
Модель показывает ожидаемый рост качества при увеличении вычислений во время вывода — редкая и важная характеристика для научных моделей.

🔹 Поддержка RNA MSA и protein templates
Работает не только с белками, но и с РНК-выравниваниями и шаблонами структур — ближе к реальным исследовательским сценариям.

🔹 Отдельная версия на большем датасете
Вышел Protenix-v1-20250630 - дообученная версия с расширенными данными.

🔹 PXMeter v1.0.0
Свой toolkit для бенчмаркинга:
6k+ комплексов, time-split, domain-specific подмножества — меньше «магии», больше воспроизводимости.

Фактически это шаг к тому, чтобы уровень структурного предсказания, раньше доступный только топ-лабораториям, стал open-source инструментом. Для биотеха, фармы и ML-исследователей - очень громкое событие.

🔗 Code: https://github.com/bytedance/Protenix
🔗 Eval toolkit: https://github.com/bytedance/PXMeter
🔗 Online server: https://protenix-server.com

@ai_machinelearning_big_data
🚀 Релиз Claude Opus 4.6

Anthropic прокачали флагманскую модель: Opus 4.6 теперь лучше планирует, дольше держит сложные агентские задачи, стабильнее работает с огромными кодовыми базами и умеет находить собственные ошибки.

Главный апдейт - это 1 миллион токенов контекста (в бете). Такой объём позволяет держать в памяти большие проекты, длинные документы и сложные цепочки рассуждений без потери связности.

По результатам тестов Opus 4.6 показывает state-of-the-art в задачах:

• агентское программирование
• междисциплинарное рассуждение
• knowledge work
• агентский поиск


Параллельно расширяются возможности Claude в Excel, PowerPoint, Claude Code и API - чтобы модель могла глубже встраиваться в рабочие процессы, аналитику и разработку.

В Claude Code добела функция команд агентов, которые работают параллельно и автономно.

www.anthropic.com/news/claude-opus-4-6

@ai_machinelearning_big_data
⚡️ Конкуренция между Anthropic и OpenAI резко обострилась.

Релизы выходят почти одновременно - это уже осознанная гонка, а не совпадение.

Релизы выходят всё чаще.
Opus 4.5 вышел в конце ноября, GPT-5.2 Codex - в декабре. Сейчас начало февраля, и вышли уже новые версии типовых ИИ.

Цикл обновлений сократился до 2–3 месяцев. И за это время модели делают заметный шаг вперёд, а не «минорный апдейт».

Но главное даже не в бенчмарках.

Opus 4.6 получил:

• контекст до 1 млн токенов
• более устойчивую работу в агентных задачах
• надёжную навигацию по огромным кодовым базам
• умение находить и исправлять собственные ошибки

Плюс - расширение для Excel и PowerPoint. Не как эксперимент, а как рабочий инструмент.

И тут OpenAI делает свой ход.

Ключевая особенность GPT-5.3 Codex - одновременно лучшая токен-эффективность и более быстрый инференс.

Обычно улучшают что-то одно. Здесь - оба параметра сразу.

Но самое важное скрыто в одной фразе из блога OpenAI:
GPT-5.3 Codex стал первой моделью, которая помогала создавать саму себя. Она участвовала в отладке обучения, анализе тестов и деплое.

Это принципиальный сдвиг.

Роль человека не исчезает, но меняется. Он всё меньше пишет код и всё больше проектирует систему, в которой ИИ сам ускоряет своё развитие.

Мы входим в эпоху самоулучшающихся моделей.

Либо релизы будут выходить ещё чаще, либо каждый следующий шаг будет давать всё больший прирост.

В любом случае дальше всё пойдёт быстрее. И заметно мощнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM