Hugging Face представила SmolLM2, новую серию SLM, оптимизированных для работы на устройствах c ограниченными ресурсами и предназначенных для выполнения задач генерации и обобщения текста на английском языке и вызова функций.
Модели SmolLM2 были обучены на миксе из наборов данных FineWeb-Edu, DCLM и Stack. Тестирование после обучения показало превосходство старшей модели SmolLM2-1.7B над Meta Llama 3.2 1B и Qwen2.5-1.5B.
Модели доступны в трёх конфигурациях: 135М, 360М и 1.7B параметров, каждая модель имеет свою Instruct-версию, а 1.7B и 360М еще и официальные квантованные версии GGUF:
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
@ai_machinelearning_big_data
#AI #ML #SLM #Huggingface #SmolLM2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Cosmos Tokenizer - набор токенизаторов для изображений и видео с высокой степенью сжатия при сохранении качества реконструкции, представленный на конференции Conference for Robot Learning 2024, которая проходит до 9 ноября в Мюнхене.
Cosmos Tokenizer предлагает непрерывную (C) и дискретную (D) токенизацию для изображений (I) и видео (V), что формирует 4 типа токенизаторов: CI, DI, CV и DV.
Cosmos Tokenizer имеет внушительные показатели сжатия: 8x или 16x для пространственного сжатия изображений и 4x или 8x для временного сжатия видео, при этом работает до 12 раз быстрее, чем другие современные токенизаторы, сохраняя при этом высокое качество изображения.
Такая эффективность обусловлена легкой временно-причинной архитектурой, использующей причинную временную свертку и слои внимания. Этот дизайн архитектуры гарантирует, что обработка каждого кадра зависит только от текущих и прошлых кадров, сохраняя временную согласованность видео.
Для оценки Cosmos Tokenizer использовались стандартные наборы данных и новый набор данных TokenBench, созданный NVIDIA. Cosmos Tokenizer сравнивался с современными токенизаторами с использованием метрик PSNR, SSIM, rFID и rFVD.
Результаты тестирования показали превосходство Cosmos Tokenizer над существующими методами как по качеству реконструкции, так и по скорости работы.
@ai_machinelearning_big_data
#AI #ML #NVIDIA #Tokenizer #Cosmos
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Анализ данных (Data analysis)
⚡️ CogVideoX1.5-модели серии 5B, включая T2V зоры и I2V-модели.
Эти модели поддерживают более высокое разрешение (1360 * 768) и более высокую частоту кадров (16 кадров в секунду). Версия SAT имеет открытый исходный код, а версия для диффузоров находится в стадии адаптации.😀
🔗 HF: https://huggingface.co/THUDM/CogVideoX1.1-5B-SAT
🔗 Github: https://github.com/THUDM/CogVideo
🔗 Paper: https://arxiv.org/abs/2408.06072
🔗 Подробнее про модели: https://xn--r1a.website/ai_machinelearning_big_data/5429
@data_analysis_ml
Эти модели поддерживают более высокое разрешение (1360 * 768) и более высокую частоту кадров (16 кадров в секунду). Версия SAT имеет открытый исходный код, а версия для диффузоров находится в стадии адаптации.😀
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ CogVideoX1.5-модели серии 5B, включая T2V зоры и I2V-модели.
Эти модели поддерживают более высокое разрешение (1360 * 768) и более высокую частоту кадров (16 кадров в секунду). Версия SAT имеет открытый исходный код, а версия для диффузоров находится в стадии адаптации.😀
🔗 HF: https://huggingface.co/THUDM/CogVideoX1.1-5B-SAT
🔗 Github: https://github.com/THUDM/CogVideo
🔗 Paper: https://arxiv.org/abs/2408.06072
🔗 Подробнее про модели: https://xn--r1a.website/ai_machinelearning_big_data/5429
@data_analysis_ml
Эти модели поддерживают более высокое разрешение (1360 * 768) и более высокую частоту кадров (16 кадров в секунду). Версия SAT имеет открытый исходный код, а версия для диффузоров находится в стадии адаптации.😀
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
AdaCache основан на наблюдении, что «не все видео одинаковы»: некоторым видео требуется меньше шагов денойза для достижения приемлемого качества, чем другим.
AdaCache использует кэширование остаточных вычислений в блоках трансформера (например, выходные данные механизмов внимания или MLP) на определенном шаге диффузии и повторного использования их на нескольких последующих шагах, количество которых зависит от генерируемого видео.
Решение о том, когда нужно выполнить следующее вычисление, принимается на основе метрики расстояния, которая измеряет скорость изменения между сохраненными и текущими представлениями.
Чтобы избежать артефактов для динамики используется регуляризация движения (MoReg).
MoReg оценивает движения в латентном пространстве на основе разности остаточных кадров, а чтобы эта оценка была эффективна на ранних шагах диффузии, MoReg вычисляет градиент движения, который выступает в качестве разумного раннего предиктора. И оценка движения, и градиент движения используются в качестве масштабирующего фактора метрики расстояния для регуляризации схемы кэширования AdaCache.
AdaCache был протестирован на Open-Sora-v1.2, Open-Sora-Plan-v1.1 и Latte. Результаты показали, что AdaCache обеспечивает ощутимое ускорение без ущерба для качества генерации. Фактически, он достигает ускорения в 4.49x, 3.53x и 2.46x соответственно на трех рассмотренных базовых видео.
Прикладной кейс использования AdaCache предлагается на бейслайне Open-Sora с вариантами запуска: Baseline, AdaCache и AdaCache+MoReg.
⚠️ Пример инференса рекомендуются на одном GPU A100 (80Gb)
# Baseline
bash run_sample_video.sh configs/sample.py
# AdaCache
bash run_sample_video.sh configs/sample_adacache.py
# AdaCache+MoReg
bash run_sample_video.sh configs/sample_adacache_moreg.py
@ai_machinelearning_big_data
#AI #ML #DiT #AdaCache #Text2Video
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM