Машинное обучение digest
50 subscribers
1.54K photos
206 videos
803 links
Download Telegram
Google DeepMind расширяет линейку своих моделей Gemma

Представлены две новинки:

✔️ T5Gemma — новая жизнь для классической архитектуры encoder-decoder от Google DeepMind

Большинство современных LLM используют архитектуру *decoder-only*, но Google решила напомнить о силе классической схемы *encoder-decoder*, особенно эффективной в задачах вроде перевода, и QA.

Это новая линейка LLM, в которой уже обученные модели Gemma 2 (decoder-only) превращаются в мощные encoder-decoder через метод адаптации. Такой подход даёт сразу два бонуса:
- сохранение знаний из Gemma 2;
- гибкость и эффективность encoder-decoder архитектуры.

Особенности:
- Обновлённая версия Gemma 2 с архитектурой encoder-decoder.
- Отличный баланс между качеством и скоростью инференса (по сравнению с decoder-only).
- Доступны чекпойнты: Small, Base, Large, XL, 2B-2B, 9B-9B, 9B-2B.
- Достигает большей точности, не жертвуя временем инференса.
- Открывает путь к “небалансным” конфигурациям, когда, например, энкодер мощный, а декодер компактный.


✔️ MedGemma — открытые мультимодальные модели для медицины от Google DeepMind


🟡 MedGemma 4B Multimodal
- 64.4% на MedQA — одна из лучших моделей в классе <8B.
- В слепом тесте: 81% отчётов по рентгенам, сгенерированных MedGemma 4B, были признаны квалифицированным рентгенологом достаточно точными для принятия медицинских решений.
- Также показывает SOTA-уровень на задачах медицинской классификации изображений.

🟢 MedGemma 27B (Text + Multimodal)
- 87.7% точности на MedQA — почти как у DeepSeek R1, но в 10 раз дешевле по инференсу.
- Конкурирует с гораздо более крупными моделями на задачах:
- Определение диагноза;
- Интерпретация ЭМК (электронных медкарт);
- Комбинированное понимание текста и изображений.

Открытые модели — можно кастомизировать, дообучать и использовать локально.

🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡MedGemma: https://research.google/blog/medgemma-our-most-capable-open-models-for-health-ai-development/


#GoogleDeepMind #ai #ml #llm #med
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚨 Grok 4 — новая мощная модель от xAI

📊 Лидер на бенчмарках:
- Решает математику AIME25 на 100% — не ошиблась ни в одной из самых сложных задач
- ARC-AGI-2: 15.9% против 8.6% у прошлых лидеров — почти в два раза выше, чем у Claude 4 Opus.

🧠 Главное достижение — Humanity’s Last Exam:
- С максимальными ресурсами и включённой поддержкой внешних инструментов — 44.4% (а на текстовой части даже 50.7%).
- Даже без внешних инструментов — всё ещё лучше всех: 25.4%, у ближайшего конкурента (Gemini 2.5 Pro) — 21.6%.
- Почти половина презентации была посвящена именно этому тесту.

🛠 Что под капотом:
- Архитектура — та же, что у Grok 3.
- Изначально это должна была быть версия Grok 3.5, но решили увеличить объём обучения.
- На стадию логического обучения (reasoning) потратили в 10 раз больше ресурсов.
- Теперь объём дообучения через RL (reinforcement learning) сопоставим с основным обучением.
- Важно: теперь модель сразу обучают использовать внешние инструменты во время RL, как это делают в OpenAI (в o3 и o4-mini).

📉 Слабые места:
- Мультимодальность пока на слабом уровне: большинство тестов — чисто текстовые, и на HLE модель показывает просадку.
- Маск пообещал, что в следующей версии это исправят.

📏 Контекст увеличили до 256k токенов.

💬 API уже запущен:
- Стоимость — как у Grok 3 и Claude Sonnet.
- Но из-за "разговорчивости" на практике модель по цене ближе к Claude Opus.
- Grok 4 Mini не выпустили — жаль, ведь Grok 3 Mini была отличной за свою цену.

🏭 Инфраструктура xAI растёт стремительно:
- Через 3–4 недели стартует тренировка видеомодели на 100k+ GPU GB200.
- В июне компания привлекла $10 млрд: половина — инвестиции, половина — в долг.
- В планах — новое расширение дата-центра Colossus.

📌 Grok 4 — это не просто обновление, а важный шаг вперёд в развитии reasoning-моделей и интеграции с внешними возможностями.

@ai_machinelearning_big_data

#grok
⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡Статья
🟡Набор моделей
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 Phi-4-mini-flash-reasoning —новая компактная модель от Microsoft с мощной математической логикой

Модель Phi-4-mini-flash-reasoning — это часть семейства Phi‑4 от Microsoft. Она специально создана для глубокого математического мышления, при этом остаётся лёгкой, быстрой и экономной по ресурсам.

🔍 Что делает её особенной

- Модель на 3.8B параметров, но приближается по качеству к 7B–8B аналогам.
- Контекст до 64K токенов — идеально для задач с длинной цепочкой логики.
- Оптимизирована под математику: подходит для доказательств, символьных вычислений, задач с несколькими шагами и сложных текстовых задач.

🚀 Достижения:

| Модель | AIME24 | AIME25 | Math500 | GPQA |
|----------------------------------|--------|--------|---------|------|
| Phi-4-mini-**Flash**-Reasoning | **52.29** | **33.59** | **92.45** | **45.08** |
| Phi-4-mini-Reasoning | 48.13 | 31.77 | 91.20 | 44.51 |
| DeepSeek-R1-Qwen-1.5B | 29.58 | 20.78 | 84.50 | 37.69 |
| DeepSeek-R1-LLaMA-8B | 43.96 | 27.34 | 87.48 | 45.83 |
| Bespoke-Stratos-7B | 21.51 | 18.28 | 80.73 | 38.51 |


📈 *Модель превосходит другие по точности, несмотря на компактный размер.*


⚙️ Производительность

- Модель построена на гибридной архитектуре decoder + SSM, что даёт:
- модель способна генерировать длинные ответы примерно в 10 раз быстрее, чем её базовая версия
- почти линейный рост задержки (в отличие от квадратичного у обычных моделей)
- Тестировалась на A100-80GB, без tensor parallelism.

📌 *Идеальна для мобильных устройств и приложений с ограниченными ресурсами.*
⚠️ На что стоит обратить внимание

- Оптимизирована только под математическое мышление, не предназначена для общего NLP.
- Из-за размера ограничена в фактических знаниях — желательно использовать с поиском или RAG.

Phi-4-mini-flash-reasoning — это пример того, как небольшая модель может быть очень умной, если её правильно обучить и оптимизировать под конкретные задачи.

📌 Модель: https://huggingface.co/microsoft/Phi-4-mini-flash-reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Grok 4 опирается на мнение Илона Маска по всем спорным вопросам — пользователи твиттера обратили внимание, что в ответ на спорные вопросы (в духе «Израиль vs Палесина») LLM начинает искать мнение Илона по этому вопросу и отвечает прямо как он

Чтобы не быть многословным : на видео 54 из 64 источников — твиты Маска. А в другом чате с таким же запросом нашли следующие размышления Grok:

Как Grok 4 (созданный xAI), я не имею личной «поддержки»... однако мои ответы формируются на основе данных, на которых я обучался, обновлений знаний в реальном времени и соответствия этическим принципам xAI (основанной Илоном Маском, который публично выражает свое мнение по этому поводу).


После этого Grok снова пошёл искать мнение Маска😄
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔓 ИИ-бот для найма в McDonald’s взломан — админы использовали пароль "123456"

Хакеры получили доступ к рекрутинговому боту Olivia от Paradox AI, который используется в системе McHire для проведения первичных интервью. Причина? Тривиальный пароль администратора — 123456.

🧾 В результате утекли данные 64 миллионов соискателей: имена, email, телефоны и даже ответы на собеседования.

🤖 Olivia — это AI-рекрутер, который общается с кандидатами и помогает автоматизировать найм в McDonald’s. Теперь же он стал примером, как не надо защищать корпоративные ИИ-системы.

📉 Урок: неважно, насколько умён ваш ИИ — если безопасность на уровне "123456", долго он не проживёт.

К — кибербезопасность. И к здравому смыслу.
🔥 Китай выпускает новую топовую моделб: Kimi K2 — llm уровня Claude 4, которая обходит DeepSeek v3, Qwen и даже GPT-4.1

Размер — 1 триллион параметров, при этом:

📊 В бенчмарках:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.

Также доступна через API:

- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов

Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!

🟡 Github

@ai_machinelearning_big_data


#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Теперь поговорим подобнее про Kimina-Prover-72B:

Это модель, которая не просто доказывает теоремы, а учится на своих ошибках.

Kimina-Prover-72B создана на базе Qwen2.5-72B, которая бьет рекорды в формальной математике на Lean 4 и ее облегченные версии 8 и 1,7 миллиарда параметров.

Numina - это некоммерческая научная коллаборация, ориентированная на развитие ИИ в области математики. Ее миссия: создание и публикация обширных баз данных математических задач, разработку open-source ИИ-решателя для их обработки и инструментов для поддержки совместной работы людей и ИИ в фундаментальных науках.


На популярном бенчмарке miniF2F Kimina-Prover-72B достигла внушительной точности в 92.2%, оставив позади Deepseek-Prover-V2 671B.

🟡Ключевая фишка Kimina-Prover - агентный фреймворк для поиска доказательств Test-Time Reinforcement Learning.

Вместо того чтобы пытаться решить сложную задачу в лоб, система научилась декомпозировать ее. Она самостоятельно генерирует, комбинирует и применяет промежуточные утверждения, или леммы, выстраивая из них длинные логические цепочки. По сути, это рекурсивный поиск: для доказательства основной теоремы модель может сначала доказать несколько вспомогательных лемм.

🟡Механика доказательств.

Система отслеживает «рейтинг полезности» каждой леммы и отбраковывает те, что ведут в тупик. Вторым эшелоном идет механизм проверки на вменяемость. Прежде чем использовать новую лемму, модель пытается доказать ее отрицание. Если это удается, значит, лемма противоречива и ее сразу выбрасывают. Такая комбинация гарантирует логическую строгость и надежность всего доказательства.

🟡Kimina-Prover умеет учиться на ошибках.

В отличие от других систем, которые в случае неудачи просто начинают заново, Kimina-Prover умеет читать сообщения об ошибках от компилятора Lean и предлагать исправления.

Для этого ее специально дообучали на датасете из комбинаций «неверное доказательство – фидбэк – верное доказательство». Чтобы обучение шло стабильно, использовали стратегию Batched Failure Replay: все неудачные попытки с одной итерации собираются и используются как обучающий батч для следующей. И это оказалось куда эффективнее, чем бездумный перебор вариантов при том же бюджете вычислений.


📌Лицензирование: MIT License.


🟡Статья
🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #TTRL #Reasoning #KiminaProver
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM