Геометрия-канал
9.68K subscribers
955 photos
28 videos
107 files
809 links
Решаем задачи по геометрии каждый день.

Автор — Наталья Нетрусова @natnetint
Чат https://tttttt.me/joinchat/DxYaB0QLindiVZpW32-rfQ

По вопросам рекламы: @natnetint
Download Telegram
Приятная задачка на теорему Пифагора. Чему равно расстояние до линии горизонта? Радиус Земли считать равным 6400 км, высоту глаз над уровнем моря 1,5 м. Покажите, что при увеличении высоты в x раз (например, если забраться на гору), расстояние до линии горизонта увеличивается примерно в корень из x раз.
Forwarded from JustScience | Олимпиадная Математика (Константин Щербаков)
JustScience_листик_про_изогональное_сопряжение.pdf
41.5 KB
#Геометрия #Статья #Листик
Прикладываем статью Д.Прокопенко из Кванта про изогональное сопряжение — там можно найти доказательства полезных свойств изогонального сопряжения и примеры их использования


Здесь же прикреплена наша подборка задач, прорешав которую вы научитесь применять изогональное сопряжение в содержательных задачах!
Forwarded from Я веду кружок (Konstantin Knop)
Метазадача на построение циркулем и линейкой

В прошлом месяце мы в Euclidea публиковали несколько задачек на построение "ржавым циркулем", то есть циркулем с фиксированным (единичным) радиусом (и, конечно, линейкой).
В следующем - хотим продолжить тему. В связи с этим у меня вопрос ко всем тем, кто любит решать задачки на построение: предложите нам самую интересную, на ваш вкус, задачу, которую надо было бы решить такими двумя инструментами.

Основные требования к задаче:
1) Минимум "материала" - чем проще исходный чертеж, тем лучше
2) Чтобы не работало традиционное построение
3) Чтобы в _достаточно коротком_ решении была какая-то интересная изюминка
Разумеется, если мы возьмем в конкурс вашу задачу, то укажем ее авторство.

Если хотите, можете предлагать задачи прямо в чатик. Если хотите в личку - @knop66
Красный треугольник является правильным. Синяя окружность является окружностью девяти точек черного треугольника.
Много геометрических каналов, конечно, развелось... проще перечислить тех, у кого их нет... но я попробую в почти случайном порядке перечислить те, что есть.

Геометрия-канал старейший геометрический канал
Geometry Ukraine
Geometry Belarus
геометрия от Волчкевича
геометрия с Федором Ниловым
NeuroGeometry геометрия с не только лишь человеческим лицом
канал Ярослава Щербатова специалиста по Акопяну
канал Задача дня Юсуфа Нагуманова
Geometry Weekly автор скрывает свое имя... но мы то знаем...

У многих каналов есть свои чаты, но их уж я упоминать не буду. Наверняка, есть еще десяток, можете скинуть в комментариях, если действительно туда стоит заходить...
В четырехугольнике BCED три стороны равны (DB=BC=CE). Точка A внутри четырехугольника такова, что углы ABC и ACB равны \alpha и \beta, угол ABD равен 60°–(\alpha+2\beta)/3, а угол ACE равен 60°+(2\alpha+\beta)/3.

Докажите, что угол DAE равен \alpha+\beta 

Источник: https://www.facebook.com/share/p/xn62fqozbsGxHcrt/?mibextid=oFDknk
#Геометрия #Задача

Через точку внутри окружности Ω проведены три хорды, делящие ее на шесть криволинейных треугольников. В три из них, через один, вписали оранжевые окружности. Докажите, что сумма радиусов оранжевых окружностей не превосходит радиуса Ω.

Обсудить решение вы можете в нашем чате!
Геометрия-канал
Добрая задача. Докажите,что сумма площадей нечетных треугольников равна сумма площадей четных треугольников. (Одноцветные четырехугольники являются квадратами)
Интересно посмотреть, верно ли такое: если для четноугольника суммы площадей четных и нечетных треугольников равны для первого слоя, то аналогичное равенство сумм площадей четырехугольников будет верно и для всех слоев
O,H - центр описанной окружности и ортоцентр оранжевого треугольника. У задачи есть очень изящное решение (как всегда)
Из комментариев от пользователя Yu Ka. Красный и синий треугольники правильные. Доказать, что зеленый тоже правильный.
Симпатичная несложная "учебная" задача моего учителя М.А. Волчкевича. Попробуйте решить ее в уме.

В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

Рекомендую к прочтению его учебники Матвертикали 7-9, зеленый задачник Геометрия 7-8 и канал @volk_geometry
Forwarded from AllМАT
Вот такая интересная задача мне попалась на днях: AD — биссектриса, J — точка на отрезке AD,
P — пересечение касательной к (АКL) в точке А и ВС. Докажите, что Р равноудалена от А и J.
Источник: устный тур «ТурГор» 2019, 6 задача.
Ждем ваши решения в комментариях!💪

Вот и весь AllМАТ🟣
Please open Telegram to view this post
VIEW IN TELEGRAM
⬜️ Финал олимпиады им. Шарыгина

Олимпиада имени И.Ф Шарыгина — это престижная геометрическая олимпиада для школьников 8–10 классов. Организатором выступает МЦНМО (Московский центр непрерывного математического образования).

Игорь Федорович Шарыгин — советский и российский математик и педагог, специалист по элементарной геометрии, популяризатор науки, автор учебников и пособий для школьников.

После окончания механико-математического факультета Московского государственного университета, Шарыгин остался в аспирантуре, а затем начал свою педагогическую карьеру в МГУ.

На протяжении многих лет Игорь Федорович посвятил себя не только преподаванию, но и популяризации математики. Он стал автором множества учебников и методических пособий, которые пользовались огромной популярностью и использовались в школах по всей стране.

В память об Игоре Федоровиче Шарыгине ряд российских научных организаций и учебных заведений решили ежегодно, начиная с 2005 года, проводить геометрическую олимпиаду.

Финальный тур 20-й олимпиады им. Шарыгина состоялся 30 июля - 2 августа. На решение задач участникам 8-10 классов отводилось два дня: 31 июля и 1 августа.

На сайте вы можете посмотреть с задания прошлых лет, а мы делимся с вами условиями этого года.

В комментариях можно найти решения👇🏻
Геометрия-канал
Photo
Отмечу крутую задачу от Григория Забазнова, а именно 9.8. Точки P и Q изогонально сопряжены в треугольнике ABC.