Геометрия-канал
9.62K subscribers
950 photos
28 videos
107 files
808 links
Решаем задачи по геометрии каждый день.

Автор — Наталья Нетрусова @natnetint
Чат https://tttttt.me/joinchat/DxYaB0QLindiVZpW32-rfQ

По вопросам рекламы: @natnetint
Download Telegram
Геометрия-канал
Вопрос без картинки. Как построить(с помощью геогебры) треугольник такой,что его ортоцентр лежит на его вписанной окружности?
Задача подсказка. Дана парабола и точки A,B,C на ней так, что ее фокус является ортоцентром треугольника ABC. Тогда точка H лежит на вписанной окружности треугольника ABC.
Ладно, вот вам другая задача. А то говорят мало задач про многоугольники))

Даны два правильных шестиугольника.

(a) Докажите, что сумма площадей красных четырехугольников равна сумме площадей синих.

(b) Докажите, что сумма квадратов площадей красных четырехугольников равна сумме квадратов площадей синих.

Авторы: Fotis Dellaportas
и В.Н. Дубровский
Через общую точку двух окружностей проводят всевозможные прямые, которые вторично пересекают эти окружности в точках A и B. Доказать, что ГМТ середин AB — окружность.
Bulgaria NMO 2024, Problem 6
Вот такая симпатичная и несложная задача была в это воскресенье на устной олимпиаде по геометрии (Автор: Д. Прокопенко):

B треугольнике ABC провели биссектрису BL. Докажите, что центры окружностей, вписанных в треугольники ABL и CBL, а также центры вневписанных окружностей этих треугольников, касающихся стороны BL, лежат на одной окружности.

Красиво, не правда ли?
Добрая задача. Два подобных прямоугольных треугольника расположены как показано на рисунке. Докажите, что центр синей окружности попадает на катет.

(автор Д.В. Фомин)
Геометрия-канал
Лекция Дмитрия Швецова про геометрические шедевры М.А.Волчкевича.
Ну ещё я придумал обобщение одной из задач,которые разбираются в этой лекции.
На основании равнобедренного треугольника во внешнюю сторону построена дуга окружности. Две прямые, проходящие через вершину треугольника, делят на три равные части как основание, так и дугу. Найти отношение величины углы при вершине треугольника к градусной мере построенной дуги.
BC || DE. Докажите,что существует синяя окружность.
Найдите общее с прошлой задачей.
Про полувписанные окружности интересная лемма. Доказать, что общая касательная параллельна хорде.
Очень крутая задача с очень крутым решением. JBMO Shortlist 2022 G6. Proposed by Nikola Velov, Macedonia.
Forwarded from Дмитрий Прокопенко
25 Ортоцентр ортотреугольник.pdf
170.8 KB
Этот листок даю в 8 классе на кружке, а основные факты (на картинках) на уроках. Сильные запоминают в 8 , слабые -- в 9, и то не все, конечно.
Продолжаю выкладывать задачки с полувписанными окружностями.
Несколько замечательных свойств одной замечательной точки, у которой пока нет замечательного названия...