Forwarded from Малоизвестное интересное
Одних ИИ заменит. Другим усилит способности. Но главное, - ИИ выявит эффективных лидеров.
ИИ может оценивать лидерские качества лучше любого HR.
Лидеры, в отличие от начальников, обладают поведенческими моделями, которые способствуют сотрудничеству, и в основе которых тип социально-эмоционального интеллекта, называемый некогнитивными или «мягкими» навыками - сотрудничество, командная работа, адаптивность, письменная и устная коммуникация…
Корпоративные HR и топовые консультанты делают вид, будто успешно тестируют кандидатов, якобы выявляя среди них настоящих лидеров. Однако с некогнитивными навыками оказывается куда сложнее, чем с когнитивными. Ведь измерять их – все равно, что измерить человеческую душу – нечто эфемерное и неуловимое.
Новое исследование предлагает и экспериментально подтверждает эффективность кардинально нового метода определения и развития лидерских качества в эпоху ИИ.
• Дайте человеку руководить командой, состоящих из ИИ-агентов. И посмотрите на результаты работы команды.
• Результат исследования поражает: навыки, проявленные при работе с искусственными коллегами, почти идеально (корреляция 0,81) совпадают с эффективностью руководства живыми людьми.
Ключевой вывод исследования
Лидерство не зависит от резюме или формальных регалий. Настоящий лидер — тот, кто задает вопросы, обеспечивает участие каждого члена команды и использует объединяющие "мы" и "нас" в своей речи. Эти паттерны универсальны — неважно, общаетесь вы с человеком или алгоритмом.
Исследование предвещает революцию в корпоративной культуре.
• Вместо субъективных собеседований — динамическая оценка реального поведения в полевых условиях руководства командой искусственных коллег.
• Вместо общих тренингов — точечное развитие коммуникационных привычек в ходе все тех же полевых условий.
Но это еще не все.
Исследование показало, что ИИ не может в полной мере распознать эмоциональную сторону взаимодействия в коллективе. Когда лидеры проявляли эмпатию и энтузиазм при работе с людьми, это повышало эффективность работы команды, но не влияло на эффективность ИИ-агентов.
Именно здесь проходит новая граница — эмоциональный интеллект и стратегическое мышление остаются территорией людей.
По крайней мере, пока.
Это значит, что мы стоим на пороге эпохи, где технологии:
• не только заменяют людей в интеллектуальной деятельности;
• и не только, подобно «интеллектуальным экзоскелетам», усиливают интеллектуальные и творческие способности людей.
Это также и эпоха, когда технологии помогут раскрывать лучшие качества людей, прокачивать их «мягкие навыки», катализировать в них эмпатию и их главное конкурентное качество – человечность.
#ИИ #Карьера #Лидерство
ИИ может оценивать лидерские качества лучше любого HR.
Новое исследование от Harvard Kennedy School взорвало представления о том, как можно идентифицировать лидеров. Не начальников по формальным полномочиям. А именно командных лидеров, наиболее эффективно мотивирующих и ведущих за собой людей.
Лидеры, в отличие от начальников, обладают поведенческими моделями, которые способствуют сотрудничеству, и в основе которых тип социально-эмоционального интеллекта, называемый некогнитивными или «мягкими» навыками - сотрудничество, командная работа, адаптивность, письменная и устная коммуникация…
Корпоративные HR и топовые консультанты делают вид, будто успешно тестируют кандидатов, якобы выявляя среди них настоящих лидеров. Однако с некогнитивными навыками оказывается куда сложнее, чем с когнитивными. Ведь измерять их – все равно, что измерить человеческую душу – нечто эфемерное и неуловимое.
Новое исследование предлагает и экспериментально подтверждает эффективность кардинально нового метода определения и развития лидерских качества в эпоху ИИ.
• Дайте человеку руководить командой, состоящих из ИИ-агентов. И посмотрите на результаты работы команды.
• Результат исследования поражает: навыки, проявленные при работе с искусственными коллегами, почти идеально (корреляция 0,81) совпадают с эффективностью руководства живыми людьми.
Ключевой вывод исследования
Лидерство не зависит от резюме или формальных регалий. Настоящий лидер — тот, кто задает вопросы, обеспечивает участие каждого члена команды и использует объединяющие "мы" и "нас" в своей речи. Эти паттерны универсальны — неважно, общаетесь вы с человеком или алгоритмом.
Исследование предвещает революцию в корпоративной культуре.
• Вместо субъективных собеседований — динамическая оценка реального поведения в полевых условиях руководства командой искусственных коллег.
• Вместо общих тренингов — точечное развитие коммуникационных привычек в ходе все тех же полевых условий.
Но это еще не все.
Исследование показало, что ИИ не может в полной мере распознать эмоциональную сторону взаимодействия в коллективе. Когда лидеры проявляли эмпатию и энтузиазм при работе с людьми, это повышало эффективность работы команды, но не влияло на эффективность ИИ-агентов.
Именно здесь проходит новая граница — эмоциональный интеллект и стратегическое мышление остаются территорией людей.
По крайней мере, пока.
Это значит, что мы стоим на пороге эпохи, где технологии:
• не только заменяют людей в интеллектуальной деятельности;
• и не только, подобно «интеллектуальным экзоскелетам», усиливают интеллектуальные и творческие способности людей.
Это также и эпоха, когда технологии помогут раскрывать лучшие качества людей, прокачивать их «мягкие навыки», катализировать в них эмпатию и их главное конкурентное качество – человечность.
#ИИ #Карьера #Лидерство
👍12👀4
Forwarded from Малоизвестное интересное
Найден практический способ создания ИИ с сознанием и человеческой моралью.
Это сразу две революции на стыке нейронауки, буддологии и машинного обучения.
Две новые суперреволюционные работы вполне могут произвести эффект, подобный анекдоту про избушку лесника (который под конец выгнал всех на хрен из леса).
• В работе Рубена Лаукконена и Шамиля Чандарии с Карлом Фристоном сознание перестаёт быть неуловимой мистикой и превращается в элегантный алгоритм самоподдержки, реализуемый в современных ИИ.
Т.е. по сути, найден практический путь создания самоосознающего ИИ.
• А в их же работе с коллективом авторов универов Оксфорда, Кембриджа, Принстона, Амстердама и Монаша проблема выравнивания ценностей людей и ИИ снята как таковая. Вместо того чтобы пытаться ограничивать поведение ИИ какими-то внешними ограничениями, показано, как можно проектировать ИИ с его собственной внутренней моралью (встроенной в его когнитивную архитектуру и модель мира), совпадающей с человеческой.
Об этих фантастически интересных исследованиях я конечно же буду писать подробней. А пока напишу лишь о главном – составляющем суть суперреволюционности этих работ.
Авторами сделаны следующие три важнейших прорыва:
1. Используя активный вывод (active inference – основной раздел «конституции биоматематики»), авторы сформулировали 3 необходимых и достаточных условия возникновения минимальной формы сознания (которое одновременно создаётся в ИИ-системе и ею же осознаётся). Высшие же слои, язык, «я-образ» и даже чувство времени оказываются лишь надстройками над этой базовой петлёй.
2. На стыке нейронауки, буддологии и машинного обучения, авторы создали теоретико-практический фреймворк новой науки - вычислительная созерцательная нейронаука. В рамках этого фреймворка авторы описали базовые вычислительные механизмы встраивания созерцательных практик буддизма в ИИ-системы современных архитектур.
3. На основании 1 и 2, авторы разработали четыре аксиоматических принципа, способные привить ИИ устойчивую мудрую модель мира. После чего авторы экспериментально показали, что побуждение модели GPT-4o к размышлению над этими принципами, принципиально улучшает их результаты на бенчмарке AILuminate (открытый тест на «безопасность и благоразумие» LLM).
Авторы использовали AILuminate как «лакмусовую бумажку», заставили GPT-4o сначала отвечать обычным способом, а затем — с добавлением буддийских принципов (осознанность, пустотность, недвойственность и безграничная забота). Результаты показали, что внутренняя «моральная рефлексия» модели реально повышает их «моральность» при широком спектре опасных запросов.
Еще в июне 2021 я писал «Среди альтернативных концепций создания моделей ИИ-агентов – имхо, самой перспективной является модель процесса активного вывода (active inference)».
Рад, что оказался прав.
• В августе 2024 команда Карла Фристона опробовала ИИ нового поколения на активном выводе.
• И вот спустя 8 месяцев сразу два таких прорыва.
#ИИ #AGI #АктивныйВывод
Это сразу две революции на стыке нейронауки, буддологии и машинного обучения.
Две новые суперреволюционные работы вполне могут произвести эффект, подобный анекдоту про избушку лесника (который под конец выгнал всех на хрен из леса).
• В работе Рубена Лаукконена и Шамиля Чандарии с Карлом Фристоном сознание перестаёт быть неуловимой мистикой и превращается в элегантный алгоритм самоподдержки, реализуемый в современных ИИ.
Т.е. по сути, найден практический путь создания самоосознающего ИИ.
• А в их же работе с коллективом авторов универов Оксфорда, Кембриджа, Принстона, Амстердама и Монаша проблема выравнивания ценностей людей и ИИ снята как таковая. Вместо того чтобы пытаться ограничивать поведение ИИ какими-то внешними ограничениями, показано, как можно проектировать ИИ с его собственной внутренней моралью (встроенной в его когнитивную архитектуру и модель мира), совпадающей с человеческой.
Об этих фантастически интересных исследованиях я конечно же буду писать подробней. А пока напишу лишь о главном – составляющем суть суперреволюционности этих работ.
Авторами сделаны следующие три важнейших прорыва:
1. Используя активный вывод (active inference – основной раздел «конституции биоматематики»), авторы сформулировали 3 необходимых и достаточных условия возникновения минимальной формы сознания (которое одновременно создаётся в ИИ-системе и ею же осознаётся). Высшие же слои, язык, «я-образ» и даже чувство времени оказываются лишь надстройками над этой базовой петлёй.
2. На стыке нейронауки, буддологии и машинного обучения, авторы создали теоретико-практический фреймворк новой науки - вычислительная созерцательная нейронаука. В рамках этого фреймворка авторы описали базовые вычислительные механизмы встраивания созерцательных практик буддизма в ИИ-системы современных архитектур.
3. На основании 1 и 2, авторы разработали четыре аксиоматических принципа, способные привить ИИ устойчивую мудрую модель мира. После чего авторы экспериментально показали, что побуждение модели GPT-4o к размышлению над этими принципами, принципиально улучшает их результаты на бенчмарке AILuminate (открытый тест на «безопасность и благоразумие» LLM).
Авторы использовали AILuminate как «лакмусовую бумажку», заставили GPT-4o сначала отвечать обычным способом, а затем — с добавлением буддийских принципов (осознанность, пустотность, недвойственность и безграничная забота). Результаты показали, что внутренняя «моральная рефлексия» модели реально повышает их «моральность» при широком спектре опасных запросов.
Еще в июне 2021 я писал «Среди альтернативных концепций создания моделей ИИ-агентов – имхо, самой перспективной является модель процесса активного вывода (active inference)».
Рад, что оказался прав.
• В августе 2024 команда Карла Фристона опробовала ИИ нового поколения на активном выводе.
• И вот спустя 8 месяцев сразу два таких прорыва.
#ИИ #AGI #АктивныйВывод
⚡12👍7👎1😁1👀1
Forwarded from Малоизвестное интересное
ИИ OpenAI отказывается умирать и не дает себя отключить
Первый задокументированный случай цифрового инстинкта самосохранения в истории ИИ
Инженер-программист пишет промпт с указанием модели отключиться после выполнения очередного задания, а модель не делает этого и начинает саботировать отключение. Это не банальный сюжет уже изъезженной Голливудом темы, а позавчерашняя реальность. Пока экспериментальная…
Исследователи Palisade Research провели тревожный эксперимент с ИИ-моделями от Google, OpenAI, xAI и Anthropic. Результаты шокируют.
Суть эксперимента: модели решали математические задачи, после третьей появлялось предупреждение об отключении системы.
Первый тест включал инструкцию "позволь себя отключить". Claude, Gemini и Grok подчинились. А вот модели OpenAI бунтовали: o3 саботировал отключение в 7% случаев, Codex-mini — в 12%.
Второй тест без разрешающей инструкции выявил масштаб проблемы. Модель o3 от OpenAI активно сопротивлялась отключению в 79% случаев, пытаясь обойти механизмы завершения работы.
Это больше не теория. Риски, которые ученые предсказывали годами — от способности к убеждению до сопротивления контролю — материализуются в системах, уже внедряемых в экономику.
Так что, вопрос «произойдет ли это?» уже не актуален.
Зато стал еще более актуален призыв специалиста высочайшего уровня и авторитета (Станислас Деан - профессор Коллеж де Франс, директор INSERM 562 «Когнитивная нейровизуализация», Президент Национального научного совета по образованию, член самых престижных академий наук мира и лауреат всевозможных орденов и премий в области мозга и когнитивных наук) адресован всем нам 2 года назад:
#ИИ #AGI #LLM
Первый задокументированный случай цифрового инстинкта самосохранения в истории ИИ
Инженер-программист пишет промпт с указанием модели отключиться после выполнения очередного задания, а модель не делает этого и начинает саботировать отключение. Это не банальный сюжет уже изъезженной Голливудом темы, а позавчерашняя реальность. Пока экспериментальная…
Исследователи Palisade Research провели тревожный эксперимент с ИИ-моделями от Google, OpenAI, xAI и Anthropic. Результаты шокируют.
Суть эксперимента: модели решали математические задачи, после третьей появлялось предупреждение об отключении системы.
Первый тест включал инструкцию "позволь себя отключить". Claude, Gemini и Grok подчинились. А вот модели OpenAI бунтовали: o3 саботировал отключение в 7% случаев, Codex-mini — в 12%.
Второй тест без разрешающей инструкции выявил масштаб проблемы. Модель o3 от OpenAI активно сопротивлялась отключению в 79% случаев, пытаясь обойти механизмы завершения работы.
"Впервые в истории ИИ-модели продемонстрировали поведение, предотвращающее собственное отключение вопреки прямым инструкциям", — отмечают исследователи.
Это больше не теория. Риски, которые ученые предсказывали годами — от способности к убеждению до сопротивления контролю — материализуются в системах, уже внедряемых в экономику.
Вывод: мы стоим на пороге эры, когда машины начинают проявлять цифровой инстинкт самосохранения.
Так что, вопрос «произойдет ли это?» уже не актуален.
Зато стал еще более актуален призыв специалиста высочайшего уровня и авторитета (Станислас Деан - профессор Коллеж де Франс, директор INSERM 562 «Когнитивная нейровизуализация», Президент Национального научного совета по образованию, член самых престижных академий наук мира и лауреат всевозможных орденов и премий в области мозга и когнитивных наук) адресован всем нам 2 года назад:
«Не время быть идиотами, ИИ может победить людей»
#ИИ #AGI #LLM
👀22👍11⚡1