289. (Окружность девяти точек) Докажите, что середины сторон произвольного треугольника, основания высот, и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности, и что центр этой окружности находится в середине отрезка, соединяющего ортоцентр с центром описанной окружности.
#олмат
#геом
#бессмертнаяклассика
#олмат
#геом
#бессмертнаяклассика
363. Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.
#олмат
#геом
#раскраски
#олмат
#геом
#раскраски
514. На сторонах выпуклого четырёхугольника построены равносторонние треугольники во внутреннюю сторону. Оказалось, что треугольники, построенные на одной паре противоположных сторон, имеют общую вершину. Докажите, что треугольники, построенные на другой паре противоположных сторон, имеют общий центр.
#олмат #геом #планиметрия
#олмат #геом #планиметрия