Data Science
41.1K subscribers
1.63K photos
4 videos
47 files
2.05K links
DS
По всем вопросам- @haarrp

@ai_machinelearning_big_data - machine learning

@pythonl - Python

@itchannels_telegram - 🔥 best it channels

@ArtificialIntelligencedl - AI

@pythonlbooks-📚

@programming_books_it -📚

Реестр РКН: https://clck.ru/3Fk3zS
Download Telegram
📕 Applied Causal #Inference Powered by #MachineLearning

📌Book

@datascienceiot
Forwarded from Machinelearning
🖥 Только что Google опубликовали один из лучших официальных гайдов по ИИ-агентам. И его действительно стоит прочитать.

В нем содержится все, что вам нужно знать:
> Описание агентов, компонентов и когнитивных архитектур.
> Разобраны инструменты по работе с агентами: расширения, написании функций и хранилища данных.
> Описываются методы обучения для повышения производительности агентов.
> Описываются методы создания агентов с использованием LangChain и LangGraph

Читать гайд

@ai_machinelearning_big_data


#aiagents #ai #llm #ml #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Новый метод повышения точности и безопасности ответов ИИ

Метод, позволяющий улучшить качество ответов ИИ до 15%, разработали ученые из лаборатории исследований искусственного интеллекта T-Bank AI Research. Новая методика обучения больших языковых моделей (LLM) основана на существующих методах Trust Region. Сгенерированные с их помощью тексты улучшили ответы ИИ по пяти главным параметрам: точность, связность, стиль, логика рассуждений и информативность.

📚Paper

#AI #MachineLearning #DataScience #Physics #NeuralNetworks #Algorithms

@datascienceiot
Forwarded from Machinelearning
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM