Data Secrets
77.3K subscribers
6.04K photos
592 videos
20 files
2.42K links
Главный по машинному обучению

Сотрудничество: @veron_28

РКН: clck.ru/3FY3GN
Download Telegram
Всего через несколько часов после выхода QwQ-32B Alibaba дропнули START – модель, дообученную на использование инструментов

START – это Self-Taught Reasoner with Tools. То есть здесь из обычных цепочек рассуждений пытаются сделать такие, чтобы модель в какой-то момент сама понимала, что хорошо бы проверить что-то с помощью кода, шла и проверяла.

Для этого взяли QwQ-32B и зафайнтюнили его в два этапа:

1. Во время инференса прямо в CoT вставляли подсказки. Типа «Возможно, здесь хорошо бы использовать Python», как будто моделька сама до этого догадалась. Такие подсказки становились частью контекста и заставляли ризонер подумать подольше, сгенерировать код и запустить его.

2. После первого этапа у нас остается куча цепочек с использованием интерпретатора. Среди них есть ошибочные и хорошие. Фильтруем, обрабатываем, и еще разок дообучаем модель на чистых и правильных CoT с инструментами.

Надо сказать, очень прикольный способ генерации специфичной синтетики, который, к тому же, дал свои результаты: метрики относительно базового QwQ-32B подскочили на 5-15 процентных пунктов, и STAR почти на всех представленных бенчмарках обогнал o1-mini.

arxiv.org/pdf/2503.04625
❤‍🔥75👍3923🔥92🙈1
Новая OCR система от Mistral: SOTA или все-таки нет?

Вчера вечером Mistral выкатили собственную OCR модель и заявили ее как "лучшую в мире". На всякий случай, OCR – это распознавание символов с картинки, типа doc2text или image2text. Задача звучит не очень сложно, но на самом деле многосоставная и нетривиальная, особенно когда дело доходит до распознавания сканов плохого качества или рецептов вашего терапевта. На 100% задача OCR в ML до сих пор не решена.

И да, возвращаясь к Mistral: по их внутренним неопубликованным бенчмаркам (а они только такие показали в блогпосте) моделька действительно лучшая и классно справляется и с разными языками, и с формулами, и с таблицами, и с картинками, и с рукописными бумагами, и со сканами. Плюс, на примерах из того же блогпоста выглядит супер.

К тому же она довольно дешевая и быстрая: 1000-2000 страниц обрабатывает за 1 доллар и 1 минуту.

Но что там с независимыми бенчмарками? Вот здесь и здесь, например, показывают, что Gemini Flash 2.0 со многими задачами справляется лучше, а вот тут на открытых данных разработчиков другой OCR-системы Mistral вообще оказался на 6 месте (график на картинке 3). В соцсетях многие также пишут про галлюцинации на рукописях.

В общем, модель однозначно хороша, но по поводу "лучшей в мире" все-такие есть сомнения. Подождем больше тестов. А пока вы и сами можете попробовать: здесь в чате или через API.

mistral.ai/news/mistral-ocr
👍6515🔥9🤔2
А что, если бы LLM эволюционировали, как живые существа? Вышла статья, в которой исследователи попытались соединить идеи генетических алгоритмов и LLM

Представим, что модели – это индивиды, а их веса – это гены. Тогда к ним можно применить классический набор модификаций: кроссовер (объединение весов родительских моделей для создания потомства), мутации (небольшие случайные изменения весов для увеличения разнообразия популяции), наследование опыта или естественный отбор.

Это и есть идея, которую предложили в статье. Подход назвали GENOME (GENetic Optimization for Model Evolution). Понятно, что он не для претрейна – это скорее какое-то переосмысление ансамблей и файнтюнинга на базе старых как мир генетических алгоритмов. Вот что происходит:

1. Берем несколько готовых моделей, прогоняем их по нашему датасету. Отбираем тех, кто решает задачу успешнее всего.
2. Скрещиваем их, то есть создаем новые модели, веса которых – это линейная комбинация весов родительских.
3. Добавляем мутацию, то есть какую-то случайную компоненту.
4. Переходим обратно к пункту 1.
5. На выходе получаем успешную популяцию моделей, которые дальше можем ансамблировать привычно. Например, с помощью majority voiting.


Невероятно, но факт: это работает. GENOME действительно кое-где превосходит другие методы адаптации и при этом требует совсем немного данных и ресурсов. Средний прирост метрик составил +24% относительно лучшей отдельной модели. Особенно хорошо работает на задачах, требующих логики и математического рассуждения.

arxiv.org/pdf/2503.01155
👍151👀38🤯2412🤔10🔥9❤‍🔥4👏3😁3
Известный рисерчер Миша Ласкин вместе с Яннисом Антоноглу запускают собственный стартап

Они оба – бывшие исследователи Google DeepMind и большие специалисты по RL, которые разрабатывали AlphaGo, Gemini, PaLM и другие знаковые системы.

Стартап называется ReflectionAI. В нем будут разрабатывать автономные системы суперинтеллекта. «Мы начнем с автономного кодинга» – написано в из первом посте в Твиттере.

Скоро бывшие исследователи Google образуют собственную кремниевую долину
👍110😁30🔥2312😎6🕊3🌚1
Дорогие наши DS-подписчицы!

Наша редакция от всей своей Data-души поздравляет вас с праздником! Желаем, чтобы скор вашего настроения рос, а лосс неудач падал.

А еще в честь праздника мы приготовили для вас фирменные открытки. Хватайте их и поздравляйте коллег и друзей!
115❤‍🔥30🔥18👍8💅7😐4💘1
Пользуясь случаем, делимся с вами полезной подборкой блогов / каналов / курсов по ИИ, созданных лучшими женщинами учеными и ML-разработчицами

🟦 Всеми любимый технический блог Лилиан Вэнг – исследовательницы из OpenAI, которая сейчас работает у Миры Мурати. Тут подробные объяснения концепций LLM, схемы, ссылки на актуальные статьи и многое другое. Наша любимая статья: Prompt Engineering (до того как это стало мейнстримом)

🟦 Блог и видеокурс Кэсси Козырков. Она бывшая главная специалистка по теории принятия решений на данных в Google (Chief Decision Scientist), а на сегоднящий день CEO Data Scientific. Известна своим активным блогом, прекрасным каналом на YouTube и бесплатным видеокурсом "Making Friends with ML".

🟦 Блог и огромный курс по NLP Лены Войты, из которого все всегда берут схемы и рисунки. Лена – Research Scientist в FAIR Meta, PhD и автор кучи статей. Если хотите с вероятностью 100% понять все главные концепции NLP – вам сюда.

🟦 YouTube-канал Джордан Харрод – докторантки MIT по нейронаукам. Тут и простые видео про то, как использовать ИИ в рутине, и обзоры новостей, и разборы статей, и объяснения сложных концепций ML простым языком. Однозначно рекомендуем.

🟦 Блог Рэйчел Томас – очень известной специалистки в области ML и соосновательницы образовательной платформы fast.ai. Она была включена в топ-20 женщин в ИИ по версии Forbes, а в своем блоге активно пишет об этике данных и прикладном ИИ в медицине и биологии.

Сохраняйте (и еще раз с 8 марта вас!)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥80👍2722😐7🤯2