Phi-4-Multimodal и Phi-4-Mini уже лежат в опенсорсе под лицензией MIT и интегрированы в Transformers.
Мультимодальность включает текст, аудио и видео. Ну куче мультимодальных бенчмарков модель превосходит GPT-4o, Gemini-2.0 Flash и 1.5 Pro. Это первая открытая модель такого уровня поднимания речи и OCR.
В привычных математических и кодинговых задачах тоже неплохо: mini с ризонингом соответствует o1-mini и дистилляциям R1.
Внутри 2 адаптера для видео и аудио + лоры для модальностей в основной модели, чтобы не менять ее собственные веса. Обучали в три внушительных этапа:
1. претрейн на тексте + файнтюн на тексте
2. мультимодальный трейн на vision, audio и vision-speech
3. ризонинг трейн на CoT + обучение с подкреплением с DPO
Веса, веса mini
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥88👍29❤15🤝3😎3❤🔥1
Data Secrets
В Китае придумали, как соединить LLM с диффузией На сегодняшний день все модели работают авторегрессионно, то есть предсказывают следующие токены один за одним на основе предыдущих. Это задача next token prediction. Но исследователи из Китая предложили другой…
This media is not supported in your browser
VIEW IN TELEGRAM
Помните, мы рассказывали про диффузионную языковую модель LLaDA?
Так вот подход, кажется, набирает популярность: стартап Inception Labs выпустил «первую большую диффузионную языковую модель коммерческого масштаба»: Mercury Coder.
Если кратко, идея состоит в том, чтобы вместо генерации токенов один за одним генерировать их в произвольном порядке, как бы постепенно расшумляя замаскированную последовательность (подробнее - в нашем разборе LLaDA).
Самое интересное в этом – скорость. Mercury Coder летает в 5-10 раз быстрее, чем LLM текущего поколения. Это примерно 1000 токенов в секунду на обычной H100.
И метрики при этом вполне конкурентноспособные. На Copilot арене Mercury сейчас на втором месте. Это лучше, чем GPT-4o и Gemini 1.5.
Попробовать сетку можно уже сейчас бесплатно: chat.inceptionlabs.ai/
Так вот подход, кажется, набирает популярность: стартап Inception Labs выпустил «первую большую диффузионную языковую модель коммерческого масштаба»: Mercury Coder.
Если кратко, идея состоит в том, чтобы вместо генерации токенов один за одним генерировать их в произвольном порядке, как бы постепенно расшумляя замаскированную последовательность (подробнее - в нашем разборе LLaDA).
Самое интересное в этом – скорость. Mercury Coder летает в 5-10 раз быстрее, чем LLM текущего поколения. Это примерно 1000 токенов в секунду на обычной H100.
И метрики при этом вполне конкурентноспособные. На Copilot арене Mercury сейчас на втором месте. Это лучше, чем GPT-4o и Gemini 1.5.
Попробовать сетку можно уже сейчас бесплатно: chat.inceptionlabs.ai/
👍93🔥39❤16🤯7❤🔥1
Четвертый день опенсорса от DeepSeek: библиотека DualPipe
Это инструмент для эффективной параллелизации. Что это значит:
1. Минимизация пайплайн-пузырей. Это, иначе говоря, периоды простоя оборудования, когда какие-то процессоры ничего не считают и просто ждут поступления данных.
В данном случае алгоритм позволяет прямой и обратный проход выполнять одновременно, поэтому этапы передачи перекрываются вычислениями, и обучение значительно ускоряется.
2. Симметричное распределение микробатчей в прямом и обратном проходе, чтобы сбалансировать нагрузку.
3. Хранение меньшего количества активаций. Это происходит как раз за счет симметричности: часть активаций сразу используется для обратного распространения, и их можно вычищать из памяти.
Кстати, один из троих разработчиков библиотеки – Лян Вэньфэн, CEO и основатель DeepSeek. Оказывается, он не просто руководит, но и довольно часто сам пишет код.
github.com/deepseek-ai/DualPipe
Это инструмент для эффективной параллелизации. Что это значит:
1. Минимизация пайплайн-пузырей. Это, иначе говоря, периоды простоя оборудования, когда какие-то процессоры ничего не считают и просто ждут поступления данных.
В данном случае алгоритм позволяет прямой и обратный проход выполнять одновременно, поэтому этапы передачи перекрываются вычислениями, и обучение значительно ускоряется.
2. Симметричное распределение микробатчей в прямом и обратном проходе, чтобы сбалансировать нагрузку.
3. Хранение меньшего количества активаций. Это происходит как раз за счет симметричности: часть активаций сразу используется для обратного распространения, и их можно вычищать из памяти.
Кстати, один из троих разработчиков библиотеки – Лян Вэньфэн, CEO и основатель DeepSeek. Оказывается, он не просто руководит, но и довольно часто сам пишет код.
github.com/deepseek-ai/DualPipe
👍73🔥41❤15🤯3
Я в ожидании стрима OpenAI (он будет тут):
P.S Кстати, сегодня должны были раскатить Advanced Voice на базе GPT-4o mini на всех бесплатных пользователей. У кого появилось?
P.S Кстати, сегодня должны были раскатить Advanced Voice на базе GPT-4o mini на всех бесплатных пользователей. У кого появилось?
❤51👍12😁5🍓5🍾3
В твиттер уже утекла системная карта GPT-4.5
«Это наша самая большая модель, которая продолжает парадигму масштабирования претрейна и ризонинга» – пишут в ней
Также в доке есть бенчмарки: много оценок безопасности и чуть-чуть качества. По ощущениям в кодинге хуже, чем o3-mini и даже o1, но отстает не сильно.
Стоит смотреть скорее на приросты относительно GPT-4o (это примерно 10х) + в доке прямо говорят, что это не frontier модель, а новая самая большая модель компании. Она лучше в письме, лучше понимает мир в целом и общение с ней более «человечное».
https://cdn.openai.com/gpt-4-5-system-card.pdf
«Это наша самая большая модель, которая продолжает парадигму масштабирования претрейна и ризонинга» – пишут в ней
Также в доке есть бенчмарки: много оценок безопасности и чуть-чуть качества. По ощущениям в кодинге хуже, чем o3-mini и даже o1, но отстает не сильно.
Стоит смотреть скорее на приросты относительно GPT-4o (это примерно 10х) + в доке прямо говорят, что это не frontier модель, а новая самая большая модель компании. Она лучше в письме, лучше понимает мир в целом и общение с ней более «человечное».
https://cdn.openai.com/gpt-4-5-system-card.pdf
1😐70❤30👍13🔥8
Итак, GPT-4.5 вышла
Еще раз: в сравнении с o1 на математике и кодинге модель хуже (неудивительно, это другой подход). Но нельзя бесконечно скейлить только ризонинг, и, с другой стороны, это самая большая и самая накаченная знаниями о мире модель. Она поглотила МНОГО текста и лучше подходит для простых нетехнических задач, креатива, написания текстов, социального взаимодействия и просто разговоров. То есть, это лучшая модель для НЕайти обывателя.
Отдельно отмечают глубокий элаймент и то, что модель стала безопаснее и этичнее. Ее долго тюнили на предпочтения, и ответы получаются емкие и естественные. Кроме того, в GPT-4.5 сократили процент галлюцинаций.
Пока доступно только Pro, в течение следующей недели добавят в плюс и тим. В API завезут сегодня, цены пока ждем
Блог: openai.com/index/introducing-gpt-4-5/
Еще раз: в сравнении с o1 на математике и кодинге модель хуже (неудивительно, это другой подход). Но нельзя бесконечно скейлить только ризонинг, и, с другой стороны, это самая большая и самая накаченная знаниями о мире модель. Она поглотила МНОГО текста и лучше подходит для простых нетехнических задач, креатива, написания текстов, социального взаимодействия и просто разговоров. То есть, это лучшая модель для НЕайти обывателя.
Отдельно отмечают глубокий элаймент и то, что модель стала безопаснее и этичнее. Ее долго тюнили на предпочтения, и ответы получаются емкие и естественные. Кроме того, в GPT-4.5 сократили процент галлюцинаций.
Пока доступно только Pro, в течение следующей недели добавят в плюс и тим. В API завезут сегодня, цены пока ждем
Блог: openai.com/index/introducing-gpt-4-5/
1👍103❤35🔥12😁6👨💻2🌚1
У OpenAI закончились графические процессоры 😢
По крайней мере, так говорит Сэм Альтман. Вчера после выпуска GPT-4.5 он написал в X:
Скинемся по 200 долларов Сэму на чипы?💵
P.S. Кстати цены на API зверские. 75$ за миллион токенов на input и 150$ (сколько????) на output. Это в два раза дороже, чем o1, o3-mini и 4o вместе взятые.
По крайней мере, так говорит Сэм Альтман. Вчера после выпуска GPT-4.5 он написал в X:
Это гигантская дорогая модель. Мы действительно хотели выпустить ее в версиях Plus и Pro одновременно, но мы сильно выросли, и у нас закончились GPU. На следующей неделе мы добавим десятки тысяч GPU и выпустим ее в Plus. (Скоро их будет сотни тысяч, и я почти уверен, что вы будете использовать все)
Скинемся по 200 долларов Сэму на чипы?
P.S. Кстати цены на API зверские. 75$ за миллион токенов на input и 150$ (сколько????) на output. Это в два раза дороже, чем o1, o3-mini и 4o вместе взятые.
Please open Telegram to view this post
VIEW IN TELEGRAM
1😁162👍20❤9🙈9🔥3⚡2🍌1💘1
Пятый и последний день опенсорса от DeepSeek (будем скучать)
Сегодня у нас целая файловая система 3FS (Fire-Flyer File System). Она глобально оптимизирует работу с данными и в обучении, и в инференсе. То есть позволяет:
🔵 Быстро загружать и сохранять данные для обучения модели
🔵 Мгновенно получать доступ к нужным частям данных, что очень важно для инференса
🔵 Сокращать повторные вычисления и увеличивать скорость работы
Внутри – умная параллельная сортировка, цепочная репликация, KVCache, параллельный чекпоинтинг и другие хаки, особенно актуальные именно для ML-систем. В общем, достаточно масштабно.
В тестах на чтения вся эта красота достигает пропускной способности 6.6 ТиБ/с на 180 узлах: github.com/deepseek-ai/3FS
Сегодня у нас целая файловая система 3FS (Fire-Flyer File System). Она глобально оптимизирует работу с данными и в обучении, и в инференсе. То есть позволяет:
Внутри – умная параллельная сортировка, цепочная репликация, KVCache, параллельный чекпоинтинг и другие хаки, особенно актуальные именно для ML-систем. В общем, достаточно масштабно.
В тестах на чтения вся эта красота достигает пропускной способности 6.6 ТиБ/с на 180 узлах: github.com/deepseek-ai/3FS
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤82🔥36👍25👀10🤯2
Please open Telegram to view this post
VIEW IN TELEGRAM
😁73👍21🔥9🤔7❤3🍌2
This media is not supported in your browser
VIEW IN TELEGRAM
CTO социальных платформ VK Сергей Ляджин в подкасте рассуждал о AI-технологиях в продуктах компании и технологических вызовах, которые в целом нас ожидают.
Это интересно: он говорил не только про улучшение пользовательских сценариев, но и создание новых, которых еще нет. AI меняет нас, мы меняем AI, и каждый раз появляется что-то новое.
Полный выпуск смотрите здесь.
Это интересно: он говорил не только про улучшение пользовательских сценариев, но и создание новых, которых еще нет. AI меняет нас, мы меняем AI, и каждый раз появляется что-то новое.
Полный выпуск смотрите здесь.
😐60👍23❤13🔥7🌚5😁3🙈2🤯1
По интернету пролетела новость о том, что в следующем квартале Meta планирует выпустить собственный ИИ-чат. Компания будет тестировать подписочную систему и добавлять в чат инструменты: все, как в популярных ChatGPT, Сlaude и тд.
Тем временем реакция Альтмана: "ок, пойду сделаю соцсеть"
Тем временем реакция Альтмана: "ок, пойду сделаю соцсеть"
1😁179😎19🔥15👍3🤯3❤1
Ух ты: сегодня на первом месте в топе paper of the day на Hugging Face статья от Sber AI и AIRI
Она посвящена новой и первой опенсорсной (!) модели переноса головы с картинки на картинку GHOST 2.0.
Задача похожа на face swap, но немного сложнее: тут нужно адаптировать голову под всю сцену, следить за цветом кожи, контрастом и другими характеристиками. В то же время, решения получаются практичнее. Например, в отличие от face swap, ничего не ломается, если форма лиц source (откуда переносим) и target (куда переносим) разная.
Архитектура GHOST 2.0 похожа на единственное существовавшее до этого момента решение – модель HeSer (Head Swapper), из которой позаимствовали идею двух основных модулей.
1. Aligner – модуль, реконструирующий голову для вставки в таргет. В основе подобие StyleGAN, входной эмбеддинг для которого генерируют три энкодера. Первые два считывают лицо, прическу и другие детали с source изображения. Последний – позу и выражение лица с target изображения, и меняли относительно HeSer именно его.
В старом решении один из энкондеров был избыточен, обучался с ликами и сильно все портил. Пришлось корректировать и архитектуру, и лосс, и датасет, и процесс трейна. На этом этапе уже виден огромный прогресс по сравнению с HeSer (см. картинку 1).
2. Blender – вставка головы в target фон. В оригинале здесь работала связка извлечения цветного референса для раскраски + сама зашивающая в таргет все маски и изображения модель UNet. Однако оказалось, что генератор цвета провоцирует появления серых областей, а из-за UNet вокруг головы образуется белое пространство.
Поэтому в архитектуре заменили принцип работы и того, и другого. Color Creator теперь сам заполняет все серые области на основе общих оттенков изображения, а в UNet добавили механизм экстраполяции маски, который как бы накладывает фон еще раз поверх вставки головы. При этом, чтобы вырезанных областей от маски не оставалось, картинки еще и постобрабатывали с помощью Kandinsky 2.2. Он с помощью простого запроса качественно закрашивал серость без необходимости файнтюнинга.
Результат – налицо голову. Метрики подросли, да и на глаз качество результатов сильно приятнее предыдущих алгоритмов.
🔥 Страница проекта | Хабр | Статья | Демо
Она посвящена новой и первой опенсорсной (!) модели переноса головы с картинки на картинку GHOST 2.0.
Задача похожа на face swap, но немного сложнее: тут нужно адаптировать голову под всю сцену, следить за цветом кожи, контрастом и другими характеристиками. В то же время, решения получаются практичнее. Например, в отличие от face swap, ничего не ломается, если форма лиц source (откуда переносим) и target (куда переносим) разная.
Архитектура GHOST 2.0 похожа на единственное существовавшее до этого момента решение – модель HeSer (Head Swapper), из которой позаимствовали идею двух основных модулей.
1. Aligner – модуль, реконструирующий голову для вставки в таргет. В основе подобие StyleGAN, входной эмбеддинг для которого генерируют три энкодера. Первые два считывают лицо, прическу и другие детали с source изображения. Последний – позу и выражение лица с target изображения, и меняли относительно HeSer именно его.
В старом решении один из энкондеров был избыточен, обучался с ликами и сильно все портил. Пришлось корректировать и архитектуру, и лосс, и датасет, и процесс трейна. На этом этапе уже виден огромный прогресс по сравнению с HeSer (см. картинку 1).
2. Blender – вставка головы в target фон. В оригинале здесь работала связка извлечения цветного референса для раскраски + сама зашивающая в таргет все маски и изображения модель UNet. Однако оказалось, что генератор цвета провоцирует появления серых областей, а из-за UNet вокруг головы образуется белое пространство.
Поэтому в архитектуре заменили принцип работы и того, и другого. Color Creator теперь сам заполняет все серые области на основе общих оттенков изображения, а в UNet добавили механизм экстраполяции маски, который как бы накладывает фон еще раз поверх вставки головы. При этом, чтобы вырезанных областей от маски не оставалось, картинки еще и постобрабатывали с помощью Kandinsky 2.2. Он с помощью простого запроса качественно закрашивал серость без необходимости файнтюнинга.
Результат – на
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍97🔥45❤16😁8🤯6🤓4🗿4🍌3🌭1