Forwarded from Machinelearning
🤖 MiniMax-M2: компактная MoE-модель
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
❤9👍7
🧠 Ming-Flash-Omni-Preview - новый ориентир для omni-modal моделей с архитектурой 103B-A9B Sparse MoE, сочетающей мощь и эффективность.
📸 1. Контролируемая генерация изображений
Модель вводит концепт Generative Segmentation-as-Editing - можно править изображение на уровне пикселей. На бенчмарке GenEval — впечатляющий результат 0.90.
🎬 2. Понимание потокового видео
Расширенные возможности для детального анализа аудио-видео потоков в реальном времени — понимание контекста, сцен и звука синхронно.
🏹GitHub: https://github.com/inclusionAI/Ming
🤗Hugging Face: https://huggingface.co/inclusionAI/Ming-flash-omni-Preview
🤖ModelScope: https://modelscope.cn/models/inclusionAI/Ming-flash-omni-Preview
#OpenSourceModels #AI #OmniModal #MingFlash
📸 1. Контролируемая генерация изображений
Модель вводит концепт Generative Segmentation-as-Editing - можно править изображение на уровне пикселей. На бенчмарке GenEval — впечатляющий результат 0.90.
🎬 2. Понимание потокового видео
Расширенные возможности для детального анализа аудио-видео потоков в реальном времени — понимание контекста, сцен и звука синхронно.
🏹GitHub: https://github.com/inclusionAI/Ming
🤗Hugging Face: https://huggingface.co/inclusionAI/Ming-flash-omni-Preview
🤖ModelScope: https://modelscope.cn/models/inclusionAI/Ming-flash-omni-Preview
#OpenSourceModels #AI #OmniModal #MingFlash
❤6👍2🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Google анонсировала проект Suncatcher, который будет строить ML-инфраструктуру в космическом пространстве. Концепция состоит из развертывания группировок спутников, оснащенных TPU и связанных оптическими каналами. Идея проекта в том, что на правильной орбите солнечная панель может быть до 8 раз продуктивнее, чем на Земле, а значит космос - это лучшее место для масштабирования вычислений.
Для реализации еще предстоит решить как поддерживать высокоскоростную межспутниковую связь, которая требует полета аппаратов в очень плотном строю (километр или менее). К началу 2027 года планируют запуск двух прототипов спутников для проверки работы оборудования на орбите.
research.google
Новый рекорд производительности был получен на виртуальных машинах Azure ND GB300 v6, запущенных на стоечной системе NVIDIA GB300 NVL72. В ходе тестов была достигнута совокупная скорость инференса модели Llama 2 70B в 1.1 млн токенов в секунду. Это на 27% больше предыдущего рекорда, установленного на GB200.
Новая конфигурация дала почти пятикратный прирост пропускной способности на один GPU по сравнению с поколением H100. Ключевыми факторами стали возможности архитектуры Blackwell, использование FP4 и оптимизация библиотеки NVIDIA TensorRT-LLM. Результаты были подтверждены независимой аналитической компанией Signal 65. Логи запуска тестового инстанса можно посмотреть на Github.
techcommunity.microsoft.com
Платформа вводит новые, более строгие правила для раздела Computer Science. Причиной стал резкий рост числа обзорных и концептуальных статей низкого качества, многие из которых созданы с помощью нейросетей.
Теперь работы будут приниматься к публикации только после того, как их одобрят в рецензируемом научном журнале или на конференции. Авторам потребуется предоставить соответствующее подтверждение при загрузке работы, в противном случае статья будет отклонена. Новая политика не затрагивает обычные исследовательские статьи, однако в будущем может быть распространена и на другие научные области, если там возникнет схожая проблема.
blog.arxiv.org
AgiBot в партнерстве с Longcheer Technology развернула систему обучения с подкреплением в реальном мире (RW-RL) на пилотной производственной линии. Это первый подтвержденный случай промышленного применения технологии, которая позволяет роботам обучаться непосредственно в процессе работы, а не следовать жестким инструкциям.
С RW-RL роботы AgiBot осваивают новые навыки за минуты, автономно адаптируясь к изменениям в деталях или производственных допусках. Система поддерживает стабильность промышленного уровня и не требует сложной аппаратной модификации при смене продукта. После успешного пилотного проекта компании планируют расширить применение RW-RL на сборку потребительской электроники и автомобильных компонентов.
gizmochina.com
Scale AI и Center for AI Safety опубликовали результаты бенчмарка Remote Labor Index, который оценивает способность ИИ выполнять реальную работу фрилансеров. В рамках теста исследователи взяли 240 завершенных проектов с биржи Upwork и поставили идентичные задачи 6 топовым ИИ-системам.
Результаты показали, что даже лучшие модели справились с заданиями на человеческом уровне лишь в 2.5% случаев. Почти 97% работ были признаны неудовлетворительными из-за низкого качества, неполных данных или поврежденных файлов. ИИ справился только с узкими задачами: создание логотипов или сведение аудио.
Тест наглядно подсветил огромный разрыв между показателями ИИ на синтетических бенчмарках и его реальной готовностью к автоматизации сложных проектов.
scale.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍8🔥8😢1
Forwarded from Machinelearning
GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.
Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.
Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10❤4
Forwarded from Machinelearning
Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.
Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.
Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.
Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с
torch.compile.Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.
Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.
Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.
В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.
@ai_machinelearning_big_data
#AI #ML #RL #Miles #LMSYS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3❤2🥰1
🤖 Multi-Agent Evolve теперь полностью open-source 🚀
С его кодовой базой ты можешь взять любой LLM-чекпойнт и позволить ему саморазвиваться без внешнего надзора.
Это экспериментальная система, в которой агенты эволюционируют, создавая и оценивая собственные улучшения.
💻 Код:
https://github.com/ulab-uiuc/Multi-agent-evolve
🤗 Модели (Checkpoints):
https://huggingface.co/collections/ulab-ai/multi-agent-evolve
#AI #LLM #MultiAgent #OpenSource #EvolutionaryAI
С его кодовой базой ты можешь взять любой LLM-чекпойнт и позволить ему саморазвиваться без внешнего надзора.
Это экспериментальная система, в которой агенты эволюционируют, создавая и оценивая собственные улучшения.
💻 Код:
https://github.com/ulab-uiuc/Multi-agent-evolve
🤗 Модели (Checkpoints):
https://huggingface.co/collections/ulab-ai/multi-agent-evolve
#AI #LLM #MultiAgent #OpenSource #EvolutionaryAI
🔥15👍2🥰2🤨1
Модель построена на архитектуре Mixture of Experts с общим размером 406B параметров и 32B активных.
Модель поддерживает контекст 256K токенов. HY 2.0 демонстрирует заметные улучшения на ключевых бенчмарках.
Главные достижения HY 2.0:
🧠 Reasoning: результат 73.4 на IMO AnswerBench - почти плюс 20 процентов, что закрепляет модель среди лидеров по математическому и научному мышлению.
🛠 Coding и Agents: скачок в SWE Bench Verified с 6.0 до 53.0, а Tau2 Bench вырос с 17.1 до 72.4.
⚡ Instruction Following: более стабильное выполнение сложных инструкций и естественный стиль ответов.
Модель выпускается в двух вариантах:
• HY 2.0 Think - для глубокого рассуждения, генерации кода и сложных задач
• HY 2.0 Instruct - для диалога, креативного письма и многотуровых контекстных бесед
🌐 Website: https://hunyuan.tencent.com
🔗 API Access: http://hunyuan.cloud.tencent.com/#/app/modelSquare
📄 Documentation: https://cloud.tencent.com/document/product/1729/104753
@data_analysis_ml
#AI #Tencent #Hunyuan #HY2 #LLM #MoE #DeepLearning #AIModels
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍7🔥3
Моделька на 309B параметров, из которых одновременно активны лишь 15B - за счёт умной MoE-маршрутизации модель достигает высокой эффективности. Сравнима с DeepSeek-V3.2 на общих бенчмарках.
MiMo-V2-Flash заточена под агентов и работу с инструментами.
🔥 Ключевые особенности
🏗️ Hybrid Attention
5:1 чередование 128-window SWA и Global Attention
Контекст — 256K токенов
🏆 Код и разработка
• SWE-Bench Verified - 73.4%
• SWE-Bench Multilingual - 71.7%
Новый SOTA среди open-source моделей
🚀 Скорость
• До 150 output tokens/sec
• Day-0 поддержка от @lmsysorg
MiMo-V2-Flash - пример того, как MoE-архитектуры выходят на новый уровень: быстрее, дешевле и готовые к агентным сценариям.
🤗 Model: http://hf.co/XiaomiMiMo/MiMo-V2-Flash
📝 Blog: http://mimo.xiaomi.com/blog/mimo-v2-flash
📄 Technical Report: http://github.com/XiaomiMiMo/MiMo-V2-Flash/blob/main/paper.pdf
🎨 AI Studio: http://aistudio.xiaomimimo.com
#AI #LLM #MoE #OpenSource #AgenticAI #MachineLearning #DeepLearning #GenAI #SWEBench #Xiaomi #AIModels
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍6🔥3
🚀 VoxCPM 1.5 - новый уровень реалистичной генерации речи! 🎧✨
Модель получила заметные улучшения, которые делают синтез голоса более естественным и технологически гибким.
Ключевые изменения:
🔊 Hi-Fi звук 44.1 kHz — качество приближено к студийному, вместо прежних 16 kHz
⚡ В 2 раза эффективнее — 1 секунда аудио теперь кодируется в 6.25 токена вместо 12.5
🛠 Расширенные возможности настройки — новые скрипты для LoRA и полного fine-tuning позволяют адаптировать модель под голосовые проекты
📈 Стабильность на длинных аудио — меньше артефактов и провалов при генерации
Ссылки для изучения и тестов:
HuggingFace: huggingface.co/openbmb/VoxCPM1.5
GitHub: github.com/OpenBMB/VoxCPM
#VoxCPM #TTS #AI #OpenSource
Модель получила заметные улучшения, которые делают синтез голоса более естественным и технологически гибким.
Ключевые изменения:
🔊 Hi-Fi звук 44.1 kHz — качество приближено к студийному, вместо прежних 16 kHz
⚡ В 2 раза эффективнее — 1 секунда аудио теперь кодируется в 6.25 токена вместо 12.5
🛠 Расширенные возможности настройки — новые скрипты для LoRA и полного fine-tuning позволяют адаптировать модель под голосовые проекты
📈 Стабильность на длинных аудио — меньше артефактов и провалов при генерации
Ссылки для изучения и тестов:
HuggingFace: huggingface.co/openbmb/VoxCPM1.5
GitHub: github.com/OpenBMB/VoxCPM
#VoxCPM #TTS #AI #OpenSource
❤7👍3🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
OpenAI представила GPT-5.2-Codex, которую называет самым продвинутым инструментом для реальной программной инженерии на сегодняшний день. Модель получила нативную поддержку сжатия контекста, улучшенную интеграцию с терминалом Windows и способность проводить глубокий рефакторинг крупных репозиториев без потери логической нити.
Ключевой апдейт коснулся сферы безопасности - Codex резко прибавил способностей в анализе защищенности кода. Модель уже доступна платным пользователям ChatGPT, а API будет открыт в ближайшие недели.
openai.com
Компания Илона Маска открыла публичный доступ к Grok Voice Agent API — нативному интерфейсу speech-to-speech для создания голосовых ассистентов. Решение построено на полностью собственной архитектуре, что позволило достичь задержки ответа менее 1 секунды.
API поддерживает вызов внешних инструментов, веб-поиск, прямую интеграцию с телефонией через SIP и понимает более 100 языков. В бенчмарке Big Bench Audio модель заняла 1 место с точностью 92,3%, опередив Gemini 2.5 Flash и GPT Realtime.
Главной фишкой стала ценовая политика: единый тариф составляет $0.05 за минуту. Это значительно дешевле, чем у OpenAI и ElevenLabs.
x.ai
В VS Code Insiders появилась поддержка Agent Skills - открытого протокола, разработанного Anthropic. Технология позволяет упаковывать инструкции, скрипты и вспомогательные ресурсы в модули, которыми можно пользоваться в разных ИИ-инструментах.
Главное отличие Agent Skills от привычных кастомных инструкций в функциональности: это не текстовые гайдлайны по стилю кода, а полноценные наборы инструментов для автоматизации задач, которые подгружаются в контекст модели динамически и только при необходимости.
Стандарт дает кросс-платформенность: созданный один раз скилл будет работать одинаково как в интерфейсе редактора, так и в CLI-агентах.
code.visualstudio.com
T5Gemma 2 получила серьезные архитектурные изменения по сравнению с первой версией. Чтобы снизить потребление памяти, инженеры внедрили
tied word embeddings для энкодера и декодера, а также объединили механизмы self-attention и cross-attention в единый слой. Модели доступны в компактных конфигурациях на 270M, 1B и 4B параметров.Новинка поддерживает контекстное окно до 128 тыс. токенов и умеет обрабатывать не только текст на 140 языках, но и изображения. В бенчмарках T5Gemma 2 обошла базовую Gemma 3 в задачах на длинный контекст, кодинг и мультимодальное понимание. Модели доступны на Hugging Face и Kaggle для исследовательских целей.
blog.google
Perception Encoder Audiovisual (PE-AV) - техническое ядро, лежащее в основе SAM Audio. Это мультимодальная модель, которая объединяет аудио, видео и текст в единое пространство эмбеддингов.
PE-AV умеет извлекать векторы признаков из аудио или видеокадров и формировать совместные аудиовизуальные представления. Это повышает точность в задачах кросс-модального поиска, детекции звуков и глубокого понимания сцен, где важен синхронный контекст изображения и звука.
В открытом доступе - 6 чекпоинтов модели разного размера (от Small до Large) с вариациями по количеству обрабатываемых кадров. Код опубликован на GitHub, а веса - на Hugging Face.
huggingface.co
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤5🔥2
Вчера, на просторах сети Х, Tongyi Lab запостила тизер "новогоднего подарка, который уже в пути".
Так как все очень сильно и давно ждут Z-Image Base
Розыскную бригаду собирать не пришлось - новинку спойлернул gemini-code-assist в репозитории Modelscope : это будет qwen-image-2512
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🥰2
В первый день года команда представила работу, посвящённую одной из самых болезненных проблем современных нейросетей: нестабильности обучения в сложных архитектурах.
И предложили решение: подход под названием mHC (Manifold-Constrained Hyper-Connections).
Смысл в том, что исследователи взяли мощную, но нестабильную архитектуру Hyper-Connections и ввели ограничения на внутренние связи.
1. Проекция на многообразие (manifold)
Вместо того, чтобы оставлять Hyper-Connections свободными, mHC накладывает на них ограничение, они проектируются на особое многообразие (матрицы с особыми свойствами).
Это восстанавливает identity-mapping, благодаря чему сигнал остаётся устойчивым даже через десятки или сотни слоёв.
2. Стабильность и масштабируемость
Благодаря этому ограничению сеть перестаёт «взрывать» или «затухать» сигнал при глубоком обучении, и её можно эффективно использовать в больших моделях без ухудшения качества и без сложных ухищрений.
3. Инфраструктурные оптимизации
Авторы также добавили инженерные улучшения:
- слияние ядер (kernel fusion)
- уменьшение накладных расходов по памяти
- эффекты смешанной точности
Это делает mHC быстрым и эффективным в реальных задачах даже при масштабных тренировках.
Результат впечатляет:
• обучение становится стабильнее на крупных масштабах
• модели лучше масштабируются
• повышается производительность
• снижается потребление памяти
• mHC обгоняет классические Hyper-Connections
Другими словами, DeepSeek показывает, что путь в будущее - не только большие модели, но и архитектуры, которые устойчивы изнутри.
#AI #DeepSeek #MachineLearning #NeuralNetworks #Research
https://arxiv.org/abs/2512.24880
https://www.youtube.com/watch?v=gT-0Qryi5KA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27❤12🔥4
OpenAI готовит новую аудио-модель в связке с собственным аудио-устройством.
OpenAI активно развивает свои технологии голосового ИИ, готовя платформу для будущего персонального устройства с упором на голосовой интерфейс, релиз которого ожидается примерно через год.
Внутренние команды уже объединены, а новая архитектура голосовой модели должна выйти в первом квартале 2026 года.
Что уже известно по ранним результатам:
• нас ждет более естественная и эмоциональная речь
• мгновенный ответа
• понимание мгновенных перебиваний
Все это критически важно для голосового ассистента, который не просто отвечает на вопросы, а активно взаимодействует и помогает пользователю в повседневной жизни.
https://www.theinformation.com/articles/openai-ramps-audio-ai-efforts-ahead-device
#AI #OpenAI #VoiceAI #Innovation #Future
OpenAI активно развивает свои технологии голосового ИИ, готовя платформу для будущего персонального устройства с упором на голосовой интерфейс, релиз которого ожидается примерно через год.
Внутренние команды уже объединены, а новая архитектура голосовой модели должна выйти в первом квартале 2026 года.
Что уже известно по ранним результатам:
• нас ждет более естественная и эмоциональная речь
• мгновенный ответа
• понимание мгновенных перебиваний
Все это критически важно для голосового ассистента, который не просто отвечает на вопросы, а активно взаимодействует и помогает пользователю в повседневной жизни.
https://www.theinformation.com/articles/openai-ramps-audio-ai-efforts-ahead-device
#AI #OpenAI #VoiceAI #Innovation #Future
❤7👍3🔥3