💎 In physics, #symmetry_breaking is a phenomenon in which (infinitesimally) small fluctuations acting on a system crossing a critical point decide the system's fate, by determining which branch of a bifurcation is taken. To an outside observer unaware of the fluctuations (or "noise"), the choice will appear arbitrary. This process is called symmetry "breaking", because such transitions usually bring the system from a symmetric but disorderly state into one or more definite states. Symmetry breaking is thought to play a major role in #pattern_formation.
🌀 One of the first cases of broken symmetry discussed in the physics literature is related to the form taken by a uniformly rotating body of incompressible fluid in gravitational and hydrostatic equilibrium. Jacobi and soon later Liouville, in 1834, discussed the fact that a tri-axial ellipsoid was an equilibrium solution for this problem when the kinetic energy compared to the gravitational energy of the rotating body exceeded a certain critical value. The axial symmetry presented by the McLaurin spheroids is broken at this bifurcation point. Furthermore, above this bifurcation point, and for constant angular momentum, the solutions that minimize the kinetic energy are the non-axially symmetric Jacobi ellipsoids instead of the Maclaurin spheroids.
https://en.wikipedia.org/wiki/Symmetry_breaking
🌀 One of the first cases of broken symmetry discussed in the physics literature is related to the form taken by a uniformly rotating body of incompressible fluid in gravitational and hydrostatic equilibrium. Jacobi and soon later Liouville, in 1834, discussed the fact that a tri-axial ellipsoid was an equilibrium solution for this problem when the kinetic energy compared to the gravitational energy of the rotating body exceeded a certain critical value. The axial symmetry presented by the McLaurin spheroids is broken at this bifurcation point. Furthermore, above this bifurcation point, and for constant angular momentum, the solutions that minimize the kinetic energy are the non-axially symmetric Jacobi ellipsoids instead of the Maclaurin spheroids.
https://en.wikipedia.org/wiki/Symmetry_breaking
Wikipedia
Symmetry breaking
effect or phenomenon that is not invariant under a presumed or approximate symmetry of a physical system
How can a complex organism emerge from simple, homogeneous cells? #Symmetry_breaking is the key and was first proposed (before Alan Turing) in 1940 by mathematician Nicolas Rashesvky. A largely overlooked paper by the father of theoretical biology
https://twitter.com/ricard_sole/status/1415375224984547332
https://twitter.com/ricard_sole/status/1415375224984547332