Complex Systems Studies
2.3K subscribers
1.54K photos
121 videos
111 files
4.4K links
What's up in Complexity Science?!
Check out here:

@ComplexSys

#complexity #complex_systems #networks #network_science

📨 Contact us: @carimi
Download Telegram
📝 The many facets of community detection in complex networks

Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, Renaud Lambiotte

https://arxiv.org/pdf/1611.07769v1

📌 ABSTRACT
Community detection, the decomposition of a graph into meaningful building blocks, has been a core research topic in network science over the past years. Since a precise notion of what constitutes a community has remained evasive, community detection algorithms have often been compared on benchmark graphs with a particular form of community structure, and classified based on the mathematical techniques they employ. However, this can be misleading because apparent similarities in their mathematical machinery can disguise entirely different objectives. Here we provide a focused review of the different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different facets of community detection also delineates the many lines of research, and points out open directions and avenues for future research.

#Social and #Information #Networks (cs.SI); #Data_Analysis, #Statistics and #Probability (physics.data-an); #Physics and #Society (physics.soc-ph
📖 Phenomenological theory of collective decision-making

Anna Zafeiris, Zsombor Koman, Enys Mones, Tamás Vicsek

https://arxiv.org/pdf/1612.00071v1

🔗 ABSTRACT
An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism for finding the optimal distribution of the group members' competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem -- but a far less intuitive result is that finding the optimal solution by the interacting group members requires that the specialists also have some insight into the sub-problems beyond their unique field(s). We present empirical results obtained by using a large-scale database of citations being in good agreement with the above theory. The framework we have developed can easily be adapted to a variety of realistic situations since taking into account the weights of the sub-problems, the opinions or the relations of the group is straightforward. Consequently, our method can be used in several contexts, especially when the optimal composition of a group of decision-makers is designed.

Subjects: #Physics and #Society (physics.soc-ph); Social and #Information #Networks
📄 Universality of the SIS prevalence in networks

Piet Van Mieghem


https://arxiv.org/pdf/1612.01386v1

📌 ABSTRACT
Epidemic models are increasingly used in real-world networks to understand diffusion phenomena (such as the spread of diseases, emotions, innovations, failures) or the transport of information (such as news, memes in social on-line networks). A new analysis of the prevalence, the expected number of infected nodes in a network, is presented and physically interpreted. The analysis method is based on spectral decomposition and leads to a universal, analytic curve, that can bound the time-varying prevalence in any finite time interval. Moreover, that universal curve also applies to various types of Susceptible-Infected-Susceptible (SIS) (and Susceptible-Infected-Removed (SIR)) infection processes, with both homogenous and heterogeneous infection characteristics (curing and infection rates), in temporal and even disconnected graphs and in SIS processes with and without self-infections. The accuracy of the universal curve is comparable to that of well-established mean-field approximations.

Subjects: #Physics and #Society (physics.soc-ph); #Social and #Information #Networks (cs.SI); #Populations and #Evolution (q-bio.PE)
📄 Statistical physics of vaccination

Zhen Wang, Chris T. Bauch, Samit Bhattacharyya, Alberto d'Onofrio, Piero Manfredi, Matjaz Perc,Nicola Perra, Marcel Salathé, Dawei Zhao

https://arxiv.org/pdf/1608.09010v3

📌 ABSTRACT
Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination - one of the most important preventive measures of modern times - is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research.

Comments:150 pages, 42 figures; published in Physics ReportsSubjects:Physics and #Society (physics.soc-ph); #Statistical_Mechanics (cond-mat.stat-mech); Social and Information #Networks (cs.SI); #Populations and #Evolution (q-bio.PE); Applications (stat.AP)
〽️The statistical mechanics of Twitter

🌐Paper : https://arxiv.org/abs/1812.07029
🎲 @ComplexSys
#Physics #Society #StatisticPhysics
Come to study Computational Social Systems at TU Graz! Master's programme starting from October, students with Computer Science, Social Sciences, Psychology, Business, and Law can apply.

First degree programme on #digital #society in Austria, University of Graz.

https://t.co/0d8yAlTd5M