#Review_article , 45 pages
🗞 Inverse statistical problems:
from the inverse Ising problem to data science
H. Chau Nguyen, Riccardo Zecchina, Johannes Berg
🔗 https://arxiv.org/pdf/1702.01522
📌 ABSTRACT
Inverse problems in statistical physics are motivated by the challenges of `big data' in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetisations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.
🗞 Inverse statistical problems:
from the inverse Ising problem to data science
H. Chau Nguyen, Riccardo Zecchina, Johannes Berg
🔗 https://arxiv.org/pdf/1702.01522
📌 ABSTRACT
Inverse problems in statistical physics are motivated by the challenges of `big data' in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetisations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.
#Review_Article on #granular_matter & #networks
🔖 Network Analysis of Particles and Grains
Lia Papadopoulos, Mason A. Porter, Karen E. Daniels, Danielle S. Bassett
🔗 https://arxiv.org/pdf/1708.08080
📌 ABSTRACT
The arrangements of particles and forces in granular materials and particulate matter have a complex organization on multiple spatial scales that range from local structures to mesoscale and system-wide ones. This multiscale organization can affect how a material responds or reconfigures when exposed to external perturbations or loading. The theoretical study of particle-level, force-chain, domain, and bulk properties requires the development and application of appropriate mathematical, statistical, physical, and computational frameworks. Traditionally, granular materials have been investigated using particulate or continuum models, each of which tends to be implicitly agnostic to multiscale organization. Recently, tools from network science have emerged as powerful approaches for probing and characterizing heterogeneous architectures in complex systems, and a diverse set of methods have yielded fascinating insights into granular materials. In this paper, we review work on network-based approaches to studying granular materials (and particulate matter more generally) and explore the potential of such frameworks to provide a useful description of these materials and to enhance understanding of the underlying physics. We also outline a few open questions and highlight particularly promising future directions in the analysis and design of granular materials and other particulate matter.
🔖 Network Analysis of Particles and Grains
Lia Papadopoulos, Mason A. Porter, Karen E. Daniels, Danielle S. Bassett
🔗 https://arxiv.org/pdf/1708.08080
📌 ABSTRACT
The arrangements of particles and forces in granular materials and particulate matter have a complex organization on multiple spatial scales that range from local structures to mesoscale and system-wide ones. This multiscale organization can affect how a material responds or reconfigures when exposed to external perturbations or loading. The theoretical study of particle-level, force-chain, domain, and bulk properties requires the development and application of appropriate mathematical, statistical, physical, and computational frameworks. Traditionally, granular materials have been investigated using particulate or continuum models, each of which tends to be implicitly agnostic to multiscale organization. Recently, tools from network science have emerged as powerful approaches for probing and characterizing heterogeneous architectures in complex systems, and a diverse set of methods have yielded fascinating insights into granular materials. In this paper, we review work on network-based approaches to studying granular materials (and particulate matter more generally) and explore the potential of such frameworks to provide a useful description of these materials and to enhance understanding of the underlying physics. We also outline a few open questions and highlight particularly promising future directions in the analysis and design of granular materials and other particulate matter.
#Review_Article on #granular_matter & #networks
🔖 Network Analysis of Particles and Grains
🔗 https://arxiv.org/pdf/1708.08080
🔖 Network Analysis of Particles and Grains
🔗 https://arxiv.org/pdf/1708.08080
#Review article: "Early warning signals for critical transitions in complex systems"
Sandip V. George, Sneha Kachhara, G. Ambika
https://arxiv.org/abs/2107.01210
In this review, we present the different measures of early warning signals that can indicate the occurrence of critical transitions in complex systems. We start with the mechanisms that trigger critical transitions, how they relate to warning signals and the methods used to detect early warning signals (EWS) for sudden transitions or tipping. We discuss briefly a few applications in real systems in this context, like transitions in ecology, climate and environment, medicine, epidemics, finance and engineering. Towards the end, we mention the issues in detecting EWS in specific applications and our perspective on future trends in this area, especially related to sudden transitions in the dynamics of connected systems on complex networks.
Sandip V. George, Sneha Kachhara, G. Ambika
https://arxiv.org/abs/2107.01210
In this review, we present the different measures of early warning signals that can indicate the occurrence of critical transitions in complex systems. We start with the mechanisms that trigger critical transitions, how they relate to warning signals and the methods used to detect early warning signals (EWS) for sudden transitions or tipping. We discuss briefly a few applications in real systems in this context, like transitions in ecology, climate and environment, medicine, epidemics, finance and engineering. Towards the end, we mention the issues in detecting EWS in specific applications and our perspective on future trends in this area, especially related to sudden transitions in the dynamics of connected systems on complex networks.