Раньше я предлагал вам пройти опрос про рынок ML от DevCrowd. Появились результаты!
https://devcrowd.ru/ds24/
На скриншоте раскрыт секрет быстрого развития AI индустрии
https://devcrowd.ru/ds24/
На скриншоте раскрыт секрет быстрого развития AI индустрии
Forwarded from Что-то на научном
Шикарная ситуация: авторы стебанулись над рецензентами, которые заставляли их что-то ненужное (но может быть зато свое, родное) цитировать, и прямо написали об этом в тексте статьи.
Редактор все это дело пустил «в работу» и вот, статья, с таким красивым абзацем в конце введения, уже в печати🥳
Одним словом авторы - капитальные красавчики.Другими словами - титановые шары у этих авторов 😁
Причем журнал вполне приличный (IF 8.1). Кризис научных журналов продолжается, в общем. Кстати, в том же MDPI, к рекомендациям типа «милок, ты вот эту пачку статей еще процитируй и все будет норм», относятя более чем строго. Своего вообще ничего нельзя советовать, а насчет чужих работ тоже еще десят раз уточнят, точно ли это нужно.
PS. Ссылка на саму статью авторов c Balls of Steel из Поднебесной тут.
Редактор все это дело пустил «в работу» и вот, статья, с таким красивым абзацем в конце введения, уже в печати
Одним словом авторы - капитальные красавчики.
Причем журнал вполне приличный (IF 8.1). Кризис научных журналов продолжается, в общем. Кстати, в том же MDPI, к рекомендациям типа «милок, ты вот эту пачку статей еще процитируй и все будет норм», относятя более чем строго. Своего вообще ничего нельзя советовать, а насчет чужих работ тоже еще десят раз уточнят, точно ли это нужно.
PS. Ссылка на саму статью авторов c Balls of Steel из Поднебесной тут.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from айти канал
🚀 TabM: новая DL архитектура для табличных данных
Новая большая статья по tabular DL при моем участии! Ссылки в конце поста.
Для практиков, TabM — это новый ответ на вечный вопрос: “Какую современную табличную архитектуру попробовать?”. На этот раз SOTA на бенчмарках простая, практичная и машстабируется на миллионы объектов.
Для области, TabM — это история о том, как сделать лучше, проще и дешевле одновременно. И как показать это на красивых информативных графиках 💅
Для любителей ML, TabM — это удобная точка входа в область: мы замерили и task performance, и training times, и inference throughput у многих моделей. Думаю, вводные части тоже будут интересными!
Для всех читателей: для быстрого обзора статьи, вы можете посмотреть всего три части:
📜 Abstract — TL;DR
🖼️ Figure 1 — модель
📈 Page 7 — результаты
В одном предложении: TabM is a simple and powerful tabular DL architecture that efficiently imitates an ensemble of MLPs.
Ссылки:
- arXiv
- GitHub (есть end-to-end пример и реализация в одном файле, но пока без пакета)
- Twitter (see the pinned post)
- Reddit (Ctrl+F “TabM”)
Новая большая статья по tabular DL при моем участии! Ссылки в конце поста.
Для практиков, TabM — это новый ответ на вечный вопрос: “Какую современную табличную архитектуру попробовать?”. На этот раз SOTA на бенчмарках простая, практичная и машстабируется на миллионы объектов.
Для области, TabM — это история о том, как сделать лучше, проще и дешевле одновременно. И как показать это на красивых информативных графиках 💅
Для любителей ML, TabM — это удобная точка входа в область: мы замерили и task performance, и training times, и inference throughput у многих моделей. Думаю, вводные части тоже будут интересными!
Для всех читателей: для быстрого обзора статьи, вы можете посмотреть всего три части:
📜 Abstract — TL;DR
🖼️ Figure 1 — модель
📈 Page 7 — результаты
В одном предложении: TabM is a simple and powerful tabular DL architecture that efficiently imitates an ensemble of MLPs.
Ссылки:
- arXiv
- GitHub (есть end-to-end пример и реализация в одном файле, но пока без пакета)
- Twitter (see the pinned post)
- Reddit (Ctrl+F “TabM”)
arXiv.org
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Deep learning architectures for supervised learning on tabular data range from simple multilayer perceptrons (MLP) to sophisticated Transformers and retrieval-augmented methods. This study...
🔥26👍3❤2 1
Please open Telegram to view this post
VIEW IN TELEGRAM
6 декабря в Москве и онлайн пройдёт конференция Conversations по разговорному и генеративному AI для бизнеса и разработчиков.
Вот что будет:
- Доклады про кейсы применения LLM, бенчмарки языковых моделей, голосовые технологии, RAG и многое другое. Подробности есть в статье на Хабре и сайте конференции.
- Дискуссии в бизнес- и технотреке.
- Выставка AI-решений.
- Нетворкинг.
Меня лично зацепили эти доклады:
- "LLM в действии: как с помощью чат-бота автоматизировать SQL-запросы и получать актуальную аналитику за минуты, а не дни" от команды Samokat (теперь Ecom Tech).
- "Много тонкостей, мало данных. Как построить RAG для документации по сложным продуктам, когда их больше 50" от команды Cloud Ru.
- "Масштабирование LLM приложений на миллионы клиентов" от команды Т-Банка.
Билеты можно купить здесь.
Организаторы сделали промокод на скидку 10% для подписчиков канала: CNVS24oRb.
Вот что будет:
- Доклады про кейсы применения LLM, бенчмарки языковых моделей, голосовые технологии, RAG и многое другое. Подробности есть в статье на Хабре и сайте конференции.
- Дискуссии в бизнес- и технотреке.
- Выставка AI-решений.
- Нетворкинг.
Меня лично зацепили эти доклады:
- "LLM в действии: как с помощью чат-бота автоматизировать SQL-запросы и получать актуальную аналитику за минуты, а не дни" от команды Samokat (теперь Ecom Tech).
- "Много тонкостей, мало данных. Как построить RAG для документации по сложным продуктам, когда их больше 50" от команды Cloud Ru.
- "Масштабирование LLM приложений на миллионы клиентов" от команды Т-Банка.
Билеты можно купить здесь.
Организаторы сделали промокод на скидку 10% для подписчиков канала: CNVS24oRb.
👎25❤9🔥8🤔3🤬1
https://www.lesswrong.com/posts/pNkjHuQGDetRZypmA/it-s-a-10-chance-which-i-did-10-times-so-it-should-be-100
Прикольно про связь вероятностей и числа e
Прикольно про связь вероятностей и числа e
Lesswrong
"It's a 10% chance which I did 10 times, so it should be 100%" — LessWrong
Many of you readers may instinctively know that this is wrong. If you flip a coin (50% chance) twice, you are not guaranteed to get heads. The probab…
❤16🔥2
Время крутых возможностей спасать мир от моего друга Васи! В плане, возможность от Васи. Лично ручаюсь, что Вася пока не угрожает миру. Далее прямая речь:
🎓 Стипендиальная программа Impact Academy для технических исследователей безопасности ИИ
Мы — сообщество Unitaware. Ищем амбициозных и талантливых людей в области ML/AI для участия в стипендиальной программе Impact Academy по безопасности ИИ. Это шанс проводить исследования и работать с лидерами индустрии — и получить от них приглашения в топовые AI safety лабы и проекты (например, Center for Human-Compatible Artificial Intelligence, FAR AI и Mila AI Institute)
💼 Что вас ждет?
• Оффлайн программа (3-6 месяцев с марта) в Сингапуре, Англии или США.
• Исследования и коучинг в сфере AI safety.
• Стипендия ~$5000/мес.
• Перспектива работы в ведущих AI-проектах.
👤 Кого мы ищем?
• Отличный английский и опыт в ML/DL (публикации, стажировки, проекты).
• Программирование на уровне ведущей техкомпании.
• Достижения: олимпиады или учеба на топовых кафедрах.
• Интерес к снижению рисков от продвинутых AI-систем.
⏳ Срок подачи: до 31 декабря (лучше до первой недели декабря).
Если заинтересовались или знаете подходящего кандидата, напишите @vakondyrev, это максимизирует шансы при прочих равных. За рекомендацию подходящего кандидата также предусмотрено вознаграждение
🎓 Стипендиальная программа Impact Academy для технических исследователей безопасности ИИ
Мы — сообщество Unitaware. Ищем амбициозных и талантливых людей в области ML/AI для участия в стипендиальной программе Impact Academy по безопасности ИИ. Это шанс проводить исследования и работать с лидерами индустрии — и получить от них приглашения в топовые AI safety лабы и проекты (например, Center for Human-Compatible Artificial Intelligence, FAR AI и Mila AI Institute)
💼 Что вас ждет?
• Оффлайн программа (3-6 месяцев с марта) в Сингапуре, Англии или США.
• Исследования и коучинг в сфере AI safety.
• Стипендия ~$5000/мес.
• Перспектива работы в ведущих AI-проектах.
👤 Кого мы ищем?
• Отличный английский и опыт в ML/DL (публикации, стажировки, проекты).
• Программирование на уровне ведущей техкомпании.
• Достижения: олимпиады или учеба на топовых кафедрах.
• Интерес к снижению рисков от продвинутых AI-систем.
⏳ Срок подачи: до 31 декабря (лучше до первой недели декабря).
Если заинтересовались или знаете подходящего кандидата, напишите @vakondyrev, это максимизирует шансы при прочих равных. За рекомендацию подходящего кандидата также предусмотрено вознаграждение
6👍23❤9🤔9 6😢1
Ищу датасет классификации для про вероятности с прицелом на какие-то прикольные учебные датасеты.
В итоге хочу поделиться списком. Будет полезно для тех, кто делает курсы по ML!
- Fake News
- https://www.kaggle.com/datasets/aadyasingh55/fake-news-classification/
- https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset
- Spam emails https://www.kaggle.com/datasets/ashfakyeafi/spam-email-classification
- Tiktok claims https://www.kaggle.com/datasets/raminhuseyn/dataset-from-tiktok
- Экзопланеты: https://www.kaggle.com/datasets/keplersmachines/kepler-labelled-time-series-data?select=exoTrain.csv
- Credit card fraud: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
- Depression detection: https://github.com/rafalposwiata/depression-detection-lt-edi-2022/tree/main
- Soccer database: https://www.kaggle.com/datasets/hugomathien/soccer
- Suicide/Depression: https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
- Insurance Fraud:
- https://www.kaggle.com/datasets/ravalsmit/fraudulent-claims-detection-dataset?select=fraudulent_claim.csv
- https://www.kaggle.com/datasets/arpan129/insurance-fraud-detection/data
- Stellar classification: https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
- Divorce: https://www.kaggle.com/datasets/andrewmvd/divorce-prediction
Не по классификации, но я считаю надо выделить:
- https://www.kaggle.com/datasets/vipullrathod/fish-market
Предсказание веса рыбы! AI для продажи рыбы на рынке. Разве это не прекрасно? Кроме шуток редко встречаются датасеты где признаки связаны с лейблом по понятным физическим законам. А жаль, ведь это помогает показать как ML аппроксимирует зависимость из реального мира. Обычно для таких примеров я беру вес и рост людей, но это уже заезженно. Вес рыбы намного прикольнее.
В итоге хочу поделиться списком. Будет полезно для тех, кто делает курсы по ML!
- Fake News
- https://www.kaggle.com/datasets/aadyasingh55/fake-news-classification/
- https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset
- Spam emails https://www.kaggle.com/datasets/ashfakyeafi/spam-email-classification
- Tiktok claims https://www.kaggle.com/datasets/raminhuseyn/dataset-from-tiktok
- Экзопланеты: https://www.kaggle.com/datasets/keplersmachines/kepler-labelled-time-series-data?select=exoTrain.csv
- Credit card fraud: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
- Depression detection: https://github.com/rafalposwiata/depression-detection-lt-edi-2022/tree/main
- Soccer database: https://www.kaggle.com/datasets/hugomathien/soccer
- Suicide/Depression: https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
- Insurance Fraud:
- https://www.kaggle.com/datasets/ravalsmit/fraudulent-claims-detection-dataset?select=fraudulent_claim.csv
- https://www.kaggle.com/datasets/arpan129/insurance-fraud-detection/data
- Stellar classification: https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
- Divorce: https://www.kaggle.com/datasets/andrewmvd/divorce-prediction
Не по классификации, но я считаю надо выделить:
- https://www.kaggle.com/datasets/vipullrathod/fish-market
Предсказание веса рыбы! AI для продажи рыбы на рынке. Разве это не прекрасно? Кроме шуток редко встречаются датасеты где признаки связаны с лейблом по понятным физическим законам. А жаль, ведь это помогает показать как ML аппроксимирует зависимость из реального мира. Обычно для таких примеров я беру вес и рост людей, но это уже заезженно. Вес рыбы намного прикольнее.
👍38❤9🔥9
Вообще вы можете помочь мне с книгой.
Я пишу главу про вероятности и классификаторы.
Нужен датасет:
- Учебный
- Не скучный и не тривиальный
- Прикольный
- С понятными фичами
- Не заезженный (никакого Титаника)
- Бинарная классификация
- Желательно дисбаланс классов
- Способность оценивать вероятность события и работать с неопределенностью должна быть важна, а не просто "хотелось бы f1 повыше"
- Желательно не "бизнесовый" и не душный
- Для классического мл, но может быть и nlp если tfidf способен норм справиться
Я сузил выбор до таких вариантов:
- Fraud: https://www.kaggle.com/datasets/arpan129/insurance-fraud-detection/data
- Suicide/Depression: https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
- Stellar classification: https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
Фрод идеально подходит для демонстрации работы с неопределенностью (если хреново предсказываем вероятности то не зарабатываем деньги). Но он бизнесовый и скучный. Остальные прикольные, но менее практичные и как будто там вероятности не так важны.
В итоге я в тупике. Канал, помогай!😇 😇 😇 ❤️
Я пишу главу про вероятности и классификаторы.
Нужен датасет:
- Учебный
- Не скучный и не тривиальный
- Прикольный
- С понятными фичами
- Не заезженный (никакого Титаника)
- Бинарная классификация
- Желательно дисбаланс классов
- Способность оценивать вероятность события и работать с неопределенностью должна быть важна, а не просто "хотелось бы f1 повыше"
- Желательно не "бизнесовый" и не душный
- Для классического мл, но может быть и nlp если tfidf способен норм справиться
Я сузил выбор до таких вариантов:
- Fraud: https://www.kaggle.com/datasets/arpan129/insurance-fraud-detection/data
- Suicide/Depression: https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
- Stellar classification: https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
Фрод идеально подходит для демонстрации работы с неопределенностью (если хреново предсказываем вероятности то не зарабатываем деньги). Но он бизнесовый и скучный. Остальные прикольные, но менее практичные и как будто там вероятности не так важны.
В итоге я в тупике. Канал, помогай!
Please open Telegram to view this post
VIEW IN TELEGRAM
Kaggle
Insurance Fraud Detection
Dataset on Insurance Claim Fraud Detection with response variable 0 & 1
👍20🔥5❤1
Yandex Cloud запустил AI Assistant API. Это набор инструментов для создания помощников на базе YandexGPT. В отличие от простого вызова генерации LLM этот API из коробки дает возможность хранить историю переписок и делать поиск по базе знаний с помощью RAG.
Причем базу знаний можно сделать довольно масштабной: до 1000 файлов, каждый до 128мб и до 100 поисковых индексов.
Новый сервис закрывает базовый юзкейс диалогового помощника без необходимости заниматься инфраструктурой, писать свои велосипеды или использовать, не приведи Господь, Langchain.
Причем базу знаний можно сделать довольно масштабной: до 1000 файлов, каждый до 128мб и до 100 поисковых индексов.
Новый сервис закрывает базовый юзкейс диалогового помощника без необходимости заниматься инфраструктурой, писать свои велосипеды или использовать, не приведи Господь, Langchain.
Там Таня из DLS выложила клевый лонгрид:
https://atmyre.github.io/blog/2024/ind_bias/
https://atmyre.github.io/blog/2024/ind_bias/
atmyre.github.io
Inductive bias in neural networks | Tatiana Gaintseva
What inductive bias is, where it is in neural networks ans why we need it.
👍25🔥11
Forwarded from всё предельно
Сегодня 1 декабря - день математика, поздравляю всех, кто относит себя к математикам :)
Официально такой профессиональный праздник в России закрепили в этом году. Дата выбрана в честь дня рождения Николая Ивановича Лобачевского, создателя неевклидовой геометрии.
Математический институт им. Стеклова подготовил инфографику со сравнением геометрий.
Официально такой профессиональный праздник в России закрепили в этом году. Дата выбрана в честь дня рождения Николая Ивановича Лобачевского, создателя неевклидовой геометрии.
Математический институт им. Стеклова подготовил инфографику со сравнением геометрий.
etudes.ru
Три геометрии: сходства и различия / Этюды // Математические этюды
Серия плакатов, демонстрирующих сходства и различия трёх геометрий — евклидовой, сферической и геометрии Лобачевского.
🔥31❤3 2👍1