Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Однако у этой технологии есть проблема с временной несогласованности в видео, что значительно ограничивает её практическое применение.
😩Существующие методы могут улучшить согласованность видео, но они применимы к коротким видео (менее 10 секунд) и требуют компромисса между качеством и эффективностью съёмки.
🤗 Video Depth Anything — модель, которая обеспечивает высококачественную и последовательную оценку глубины видео без ущерба для их эффективности.
Она построена на основе Depth Anything V2 и обладает мощным пространственно-временным управлением.
Доступны модели различных масштабов, при этом самая маленькая из них обеспечивает производительность в реальном времени со скоростью 30 кадров в секунду 🔥👍
Начало работы:
git clone https://github.com/DepthAnything/Video-Depth-Anything
cd Video-Depth-Anything
pip install -r requirements.txt▪GitHub
▪Paper
▪Model Small
▪Model Large
▪Demo
@ai_machinelearning_big_data
#DepthAnything #opensource #ml #depthestimation #videodepth
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🐳2❤1
Forwarded from Machinelearning
🐋 DeepSeek только что выпустила еще одну модель ИИ с открытым исходным кодом, Janus-Pro-7B.
Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.
https://huggingface.co/deepseek-ai/Janus-Pro-7B
@ai_machinelearning_big_data
#ai #deepseek #opensource #Janus
Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.
https://huggingface.co/deepseek-ai/Janus-Pro-7B
@ai_machinelearning_big_data
#ai #deepseek #opensource #Janus
👍11❤3
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.
Для этого он использует несколько сервисов:
- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.
▪ Github
▪Google Colab
@ai_machinelearning_big_data
#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔬MedRAX: новаторский ИИ-агент, разработанный для медицинских задач!
Что такое MedRAX?
MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.
🎯 Чем хорош именно MedRAX?
Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом
🛠️ Интегрированные инструменты:
- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen
💡 Ключевые особенности:
- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.
📊 ChestAgentBench:
Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.
🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели
▪ Paper: https://arxiv.org/abs/2502.02673
▪Код: https://github.com/bowang-lab/MedRAX
#ai #agents #ml #opensource #med #medicine
@bigdatai
Что такое MedRAX?
MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.
🎯 Чем хорош именно MedRAX?
Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом
🛠️ Интегрированные инструменты:
- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen
💡 Ключевые особенности:
- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.
📊 ChestAgentBench:
Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.
🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели
▪ Paper: https://arxiv.org/abs/2502.02673
▪Код: https://github.com/bowang-lab/MedRAX
#ai #agents #ml #opensource #med #medicine
@bigdatai
👍7❤3🔥2