Big Data AI
16.9K subscribers
920 photos
118 videos
19 files
922 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔎 Depth Anything — это передовая технология оценки глубины, использующая монокуляр (одну камера).

Однако у этой технологии есть проблема с временной несогласованности в видео, что значительно ограничивает её практическое применение.

😩Существующие методы могут улучшить согласованность видео, но они применимы к коротким видео (менее 10 секунд) и требуют компромисса между качеством и эффективностью съёмки.

🤗 Video Depth Anything — модель, которая обеспечивает высококачественную и последовательную оценку глубины видео без ущерба для их эффективности.

Она построена на основе Depth Anything V2 и обладает мощным пространственно-временным управлением.

🍪 Разработанная на основе совместного набора данных о глубине видео и дешевых немаркированных изображений, эта модель представляет эффективную стратегию оценки длинного видео на основе ключевых кадров. Ограничения на градиенты глубины устраняют необходимость в дополнительных предварительных данных.

🖥 Эксперименты показали, что Video Depth Anything обрабатывает видео любой длины без потери качества, последовательности, что устанавливает новый уровень в оценке глубины видео с нулевой съемкой.

Доступны модели различных масштабов, при этом самая маленькая из них обеспечивает производительность в реальном времени со скоростью 30 кадров в секунду 🔥👍

Начало работы:

git clone https://github.com/DepthAnything/Video-Depth-Anything
cd Video-Depth-Anything
pip install -r requirements.txt


Лицензирование: Apache 2.0

GitHub
Paper
Model Small
Model Large
Demo

@ai_machinelearning_big_data


#DepthAnything #opensource #ml #depthestimation #videodepth
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🐳21
Forwarded from Machinelearning
🐋 DeepSeek только что выпустила еще одну модель ИИ с открытым исходным кодом, Janus-Pro-7B.

Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.

https://huggingface.co/deepseek-ai/Janus-Pro-7B

@ai_machinelearning_big_data


#ai #deepseek #opensource #Janus
👍113
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Первый Open Source аналог Deep Research от OpenAI.

Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.

Для этого он использует несколько сервисов:

- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.

🟢 Функции
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.

Github
Google Colab

@ai_machinelearning_big_data


#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔬MedRAX: новаторский ИИ-агент, разработанный для медицинских задач!

Что такое MedRAX?

MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.

🎯 Чем хорош именно MedRAX?

Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом

🛠️ Интегрированные инструменты:


- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen

💡 Ключевые особенности:

- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.

📊 ChestAgentBench:

Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.

🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели

Paper: https://arxiv.org/abs/2502.02673
Код: https://github.com/bowang-lab/MedRAX

#ai #agents #ml #opensource #med #medicine

@bigdatai
👍73🔥2