This media is not supported in your browser
VIEW IN TELEGRAM
Все, что видит робот, он видит впервые.
🧪 В экспериментах Робот успешно справился с уборкой посуды, застиланием постели и мытьем пола в незнакомых домах, демонстрируя полное понимание задачи, её разбиение на шаги и адаптацию к новым условиям.
Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний
@ai_machinelearning_big_data
#robots #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤128👍67🔥46🥰7🍓4😁1
This media is not supported in your browser
VIEW IN TELEGRAM
Джим Фан (Директор по ИИ в NVIDIA) рассказал, что их команда добилась впечатляющего результата: роботы научились ходить и ориентироваться в пространстве без обучения в реальном мире.
Всё обучение прошло в симуляции, и после этого роботы сразу были отправлены на выполнение задач в открытом пространстве.
- Нет физических ограничений. В симуляции робот может падать и вставать хоть миллион раз без поломки. В реальности он бы ломался.
- Ускорение времени. В симуляции нет ограничений «реального времени» — можно крутить процесс с любой скоростью, насколько позволяет железо.
- Параллельное обучение. Можно сразу запускать много виртуальных роботов и собирать опыт с них всех одновременно.
Для обучения не понадобились гигантские модели -всего 1.5 миллиона параметров (не миллиардов!) хватило, чтобы смоделировать «подсознательную механику» движения человеческого тела.
Очень мощный шаг для развития embodied AI и робототехники 🚀
@ai_machinelearning_big_data
#ai #robots #nvidia #future
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥200👍54❤26🤔11👀11🤩3😁2