This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Роботы GITAI самостоятельно и собрали 5-метровую конструкцию - фундамент будущих внеземных модулей.
Это пример того, как связка ИИ + робототехника начинает давать тот самый технологический скачок, на который долго рассчитывали: автономные системы, способные строить инфраструктуру без участия человека, открывают путь к базам на Луне, Марсе и орбите.
@ai_machinelearning_big_data
#robotics #AI #automation #spacetech #GITAI
Это пример того, как связка ИИ + робототехника начинает давать тот самый технологический скачок, на который долго рассчитывали: автономные системы, способные строить инфраструктуру без участия человека, открывают путь к базам на Луне, Марсе и орбите.
@ai_machinelearning_big_data
#robotics #AI #automation #spacetech #GITAI
👍94🔥43❤15❤🔥8🌭2🤗2🤩1
Towardsdatascience запустил декабрьский Адвент-календарь "Machine and Deep Learning", котором предлагает разобраться, что под капотом у ML-процессов.
Фреймворки, например scikit-learn, сделали нас ленивыми. Вызов model.fit стал настолько обыденным, что в эпоху Gen AI кажется, будто обучение модели -это просто подбор параметров.
ML-инженеры жонглируют моделями со сложностью, которая растет в геометрической прогрессии, но при этом они не всегда способны вручную пересчитать и объяснить результаты даже самых простых алгоритмов: линейной регрессии или классификатора.
Модели превратились в "черные ящики", и это огромная проблема, ведь знание, что стоит за каждой функцией, критически важно для понимания процесса.
Фишка в том, что весь материал разбирается в Excel. Звучит диковато, но в этом и есть гений. В отличие от кода, где операции скрыты за функциями, в Excel каждая формула, каждое число, каждый расчет - всё на виду. Никаких "черных ящиков".
Уже вышло 7 статей:
Цикл поможет ответить на вопросы, которые часто остаются за кадром: как грамотно обрабатывать категориальные признаки, когда масштабирование не является правильным решением, и как измерять важность признаков, интерпретируя их напрямую с моделью, минуя модель-агностические пакеты LIME и SHAP.
Серия будет полезна студентам для осмысления формул, и менеджерам для понимания какой ML-метод необходим для бизнеса. А для разработчиков это шанс наконец-то понять теорию.
В общем, это маст-рид для тех, кто хочет перестать быть оператором библиотек и по-настоящему понять, как работает ML-движок.
@ai_machinelearning_big_data
#AI #ML #DL #Tutorial #Excel
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤6🔥3🥰3🆒1