375K subscribers
4.35K photos
829 videos
17 files
4.84K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
📢 Google уверенно выводит свои TPU на новый уровень — и делает это сразу по трём направлениям.

Компания развивает три семейства собственных ускорителей: Ironwood, Sunfish и Zebrafish.
Так Google закрывает потребности в высокопроизводительном инференсе, обучении моделей и создании огромных суперподов на 2026–2027 годов.

TPU уже используют Safe Superintelligence, Salesforce и Midjourney - то есть экосистема растёт.

**🚀 Ironwood (TPUv7):*

Это самое впечатляющее поколение TPU на сегодня:
• примерно 10× быстрее TPU v5
• примерно 4× производительнее TPU v6
• до 4,600 FP8 TFLOPS на чип
• 192 GB HBM3e
• масштабирование до 9,216 чипов в одном поде
• около 1.77 PB общей памяти

Такой уровень идеально подходит для LLM, где важны скорость и масштаб.

🔥 Sunfish (предположительно TPUv8)

Следующее поколение создаётся совместно с Broadcom.

Запуск ожидается ближе к концу 2020-х, и Sunfish должен стать главным ускорителем Google Cloud.

💡 Zebrafish: гибкая и массовая линейка

MediaTek выступает ключевым партнером по ASIC.
Zebrafish будет:
• более доступным по цене
• с гибкими характеристиками
• подходящим для локальных и более компактных кластеров

То есть не только для гигантских суперкомпьютеров, но и для широкого использования.

🌐 Зачем Google три разных TPU?

Это даёт компании возможность:
• разделять нагрузки между поколениями
• удерживать клиентов уровня Anthropic
• обеспечивать более 1 ГВт выделенной мощности
• конкурировать с Nvidia на уровне не только чипов, но целых систем

Google строит собственную вертикаль ИИ-инфраструктуры - масштабную, гибкую и рассчитанную на годы вперёд. Все это нужно, чтобы доминировать на рынке ИИ.

@ai_machinelearning_big_data

  #google #tpu
55👍52🔥15❤‍🔥1