375K subscribers
4.51K photos
885 videos
17 files
4.95K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🐼 Pandas тормозит на больших данных?

NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.

Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя cudf.pandas.

Для примеры были взяты:
📉 Скользящие средние (50D и 200D)
📅 Недельная статистика закрытия рынков
🧊 В общей сложности ~18M строк

Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз

Код скрипта не менялся вообще — тот же pandas, но на GPU.

Это один из примеров, где ускорение достигается без переписывания логики кода.

🟡 Потестить самому можно в Colab
🟡 Другие примеры с кодом — здесь

@ai_machinelearning_big_data


#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1124👍41🔥18😁3🤔3🤣2
⚡️ Полнометражный документальный фильм про Python

На Youtube вышла документалка о том, как создавался язык программирования Python и о том, как IT-сообщество сделало его одним из основ современной кодовой базы.

Для тех, кто хочет посмотреть на русском, можно открыть ссылку в Яндекс Браузере и включить нейросетевую озвучку живыми голосами.

@ai_machinelearning_big_data

#coding #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥68👍4928💘2🥰1🙈1
🌟 PyRoki: Библиотека кинематики роботов на Python.

PyRoki (Python Robot Kinematics) - это модульный, расширяемый и кроссплатформенный инструментарий, заточенный под задачи кинематической оптимизации и реализованный полностью на Python.

Фишка библиотеки - в предоставлении дифференцируемой модели прямой кинематики робота, которая строится на основе URDF-файлов, тем самым избавляя инженера от необходимости вручную прописывать кинематические цепи: система не только парсит описание робота, но и автоматически генерирует примитивы коллизий.

С точки зрения математического аппарата, PyRoki интегрируется с решателем Levenberg-Marquardt (через jaxls). Это дает возможность проводить оптимизацию на многообразиях, а также обрабатывать жесткие ограничения с помощью решателя на основе модифицированной функции Лагранжа.

Библиотека предлагает готовые реализации cost-функций: поза рабочего органа, коллизии с самим собой или объектами мира и метрики манипулируемости.

Если стандартного набора недостаточно, архитектура позволяет задавать свои функции затрат, используя как автоматическое дифференцирование, так и аналитические якобианы.

Благодаря базе JAX, библиотека кроссплатформенна: ее работа возможна на CPU, GPU и TPU.

🟡При внедрении PyRoki в пайплайн важно учитывать специфику JIT-компиляции в JAX.

Компиляция триггерится при первом запуске, а также каждый раз, когда меняются формы входных данных: например, количество целей или препятствий.

Чтобы избежать расходов на перекомпиляцию, рекомендуется использовать предварительный паддинг массивов, что позволяет векторизовать вычисления для входов с различными шейпами.

Также стоит учитывать, что в библиотеке отсутствуют планировщики, основанные на сэмплировании (графы, деревья), поэтому задачи глобального планирования пути придется решать внешними средствами.

🟡Типы поддерживаемых соединений и геометрия ограничены.

На данный момент PyRoki работает исключительно с кинематическими деревьями; замкнутые механизмы или параллельные манипуляторы не поддерживаются.

Список доступных типов джоинтов ограничен 4 позициями: вращательные, непрерывные, призматические и фиксированные. Любые другие типы соединений, встреченные в URDF, будут автоматически интерпретироваться системой как фиксированные.

Для геометрии коллизий набор примитивов также фиксирован: поддерживаются сферы, капсулы, полупространства и карты высот.

Если ваша модель использует сложные меши, коллизии для них будут аппроксимироваться капсулами.

В вопросах производительности, особенно в сценариях с интенсивными проверками коллизий, PyRoki, вероятно, уступает CuRobo, хотя, как говорится в документации - сравнительные тесты скорости и точности авторами пока не проводились.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #Pyroki #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1311👏2👌1🤗1🦄1
💀 NeuroSploit v2 - продвинутый AI-фреймворк для тестирования на проникновение (пентеста).

NeuroSploit v2 использует большие языковые модели, чтобы автоматизировать и усилить offensive security.

Фреймворк помогает анализировать цели, находить уязвимости, планировать эксплуатацию и поддерживать защитные меры, сохраняя фокус на этике и операционной безопасности.

Основные возможности:

• Агентная архитектура
Специализированные AI-агенты под разные роли: Red Team, Blue Team, Bug Bounty Hunter, Malware Analyst.

• Гибкая интеграция LLM
Поддержка Gemini, Claude, GPT (OpenAI) и Ollama с настройкой через профили.

• Тонкая настройка моделей
Отдельные LLM-профили для каждой роли: выбор модели, температура, лимиты токенов, кэш и контекст.

• Markdown-промпты
Динамические шаблоны промптов, адаптирующиеся под задачу и контекст.

• Расширяемые инструменты
Интеграция Nmap, Metasploit, Subfinder, Nuclei и других security-инструментов через конфигурацию.

• Структурированные отчёты
JSON-результаты кампаний и удобные HTML-отчёты.

• Интерактивный CLI
Командная строка для прямого управления агентами и сценариями.

NeuroSploit v2 - пример того, как agentic AI превращает пентест из ручной работы в управляемую автоматизацию.


git clone https://github.com/CyberSecurityUP/NeuroSploitv2.git
cd NeuroSploitv2


Github: https://github.com/CyberSecurityUP/NeuroSploit

@ai_machinelearning_big_data


#python #Penetrationtesting #llm #mlops #Cybersecurity
Please open Telegram to view this post
VIEW IN TELEGRAM
25👍11🔥10🦄3