Media is too big
VIEW IN TELEGRAM
DeepMind выпустили Perch 2.0 — компактную supervised-модель для биоакустики.
Без миллиардов параметров, без сложного self-supervised обучения — просто аккуратная модель, которая побила все бенчмарки и уже работает в полевых исследованиях.
🌱 Почему это важно
Звуки природы — это источник данных о биоразнообразии.
По аудиозаписям можно понять:
- какие животные живут в лесу,
- сколько их,
- размножаются ли они,
- не вытесняются ли они человеком.
Но расшифровка аудио — адский труд: в одном часе записи из тропиков десятки накладывающихся голосов.
Perch 2.0 — универсальный эмбеддер для звуков животных.
Берёт 5 секунд аудио → выдаёт вектор, с которым можно:
- находить похожие записи,
- кластеризовать звуки,
- обучать простой классификатор для новых видов (few-shot).
⚡ Работает без GPU и без дообучения.
🛠 Архитектура
- Основa: EfficientNet-B3 (12M параметров).
- Три головы:
1. Классификация ~15k видов.
2. Прототипная — создаёт семантические логиты для distillation.
3. Source prediction — угадывает источник записи.
- Обучение в два шага:
1. Прототипная голова учится сама.
2. Её логиты становятся soft-label’ами для основной (**self-distillation**).
📊 Результаты
- SOTA на BirdSet и BEANS (ROC-AUC, mAP).
- Отличная переносимость на морских данных (киты, дельфины), которых почти не было в тренировке.
- Всё это — без fine-tuning, только фиксированные эмбеддинги.
Главный вывод
Perch 2.0 показывает, что:
могут быть важнее, чем «бесконечные параметры» и сложные LLM.
🌍 Что это меняет
- Биологам — быстрый анализ джунглей Бразилии или рифов без написания своих моделей.
- ML-инженерам — наглядный пример, как обучать компактные сети без потери качества.
- Исследователям — напоминание: не всегда нужен GPT-4, чтобы сделать полезный инструмент.
@ai_machinelearning_big_data
#DeepMind #AI #Bioacoustics #MachineLearning #Perch #Ecology
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍88❤46🔥25❤🔥5
Если оставить процесс без контроля, такие агенты могут создать собственную экономику, напрямую связанную с человеческой. Это сулит и выгоды, и риски.
Авторы предлагают концепцию «песочницы» (sandbox economy) - контролируемого пространства, где агенты могут торговать и координироваться, не нанося вреда рынкам.
Вместо выполнения одной задачи, такие агенты могут:
▪ торговать, вести переговоры и заключать сделки без участия человека,
▪ переключаться между индустриями, формировать временные альянсы,
▪ координировать ресурсы в реальном времени.
Первые стандарты вроде Agent2Agent и Model Context Protocol уже соединяют агентов между собой, закладывая основу глобальной экономики «машина-машина».
Персональные AI-ассистенты вскоре смогут конкурировать и сотрудничать на этих рынках: торговаться за вычислительные мощности, доступ к данным или бронирование поездок - всё в интересах пользователей. Расчёты будут обеспечиваться цифровыми валютами и системами кредитов.
- Использовать рынки и аукционы для честного распределения ресурсов.
▪Вводить миссионные цели — коллективные задачи, согласованные обществом.
▪Создавать систему удостоверений и репутации для агентов.
▪Применять смарт-контракты, аудит и прозрачные вычисления для доверия и контроля над ии.
▪Разрабатывать гибридное регулирование - сочетание технических протоколов и институциональных мер.
Если внедрение будет продумано, триллионы машинных часов можно будет направить на решение глобальных задач - от лечения болезней до строительства инфраструктуры.
⚡️ Статья: https://arxiv.org/pdf/2509.10147
@ai_machinelearning_big_data
#AI #AgentEconomy #DeepMind #AutonomousAgents
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥66👍43❤20🤔6🐳3👨💻2🗿2💘1
Media is too big
VIEW IN TELEGRAM
⦿ Гуманойдные формы могут оказаться ключевыми для повседневного и персонального использования — там, где среда создана под людей.
А вот специализированные роботы будут незаменимы на производстве и в лабораториях.
⦿ В ближайшие пару лет нас ждёт «вау-момент» в робототехнике.
Но фундаментальные модели пока требуют доработки: надёжности и более глубокого понимания реального мира.
⦿ DeepMind работает сразу в двух направлениях:
- как с Android для роботов — универсальный слой ОС, совместимый с любым роботом;
- и с вертикальной интеграцией - разработка конкретных роботов «под ключ».
Идея проста: скоро роботы будут не только на заводах, но и рядом с нами — а управлять ими станет так же привычно, как смартфоном.
@ai_machinelearning_big_data
#DeepMind #Google #DemisHassabis #Robotics
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤔90👍34❤19👀9🎉8🤬3🔥2👏2
🧠 Google/DeepMind представили AlphaEvolve: ИИ, который помогает математикам и компьютерным теоретикам искать новые результаты.
💡 Как он работает
Обычно LLM стараются писать доказательства целиком, но это слишком сложно и ненадёжно.
AlphaEvolve идёт другим путём: он не пишет доказательства сам, а генерирует новые маленькие элементы *конструкции (gadgets)*.
Эти кусочки можно быстро проверить автоматикой, и если они работают, их можно собрать в более крупные теоремы.
📈 Что удалось найти
- Новый результат для задачи MAX-4-CUT (Это задача из теории алгоритмов и комбинаторной оптимизации, разновидность классической задачи MAX-CUT), с конструкцией, которую раньше никто не придумывал.
- Сильные новые нижние границы для задач на случайных графах, включая работу с Ramanujan graphs.
- Проверка теорем стала в 10 000 раз быстрее, чем в обычных методах.
🧩 Зачем это нужно
- Математика требует 100% точности - и тут AI помогает именно как генератор идей, а проверка остаётся строгой и надёжной.
- Такой подход экономит годы человеческой работы и открывает дорогу к новым теоремам и алгоритмам.
📄 Подробнее: research.google/blog/ai-as-a-research-partner-advancing-theoretical-computer-science-with-alphaevolve/
@ai_machinelearning_big_data
#AI #Math #DeepMind #Research
💡 Как он работает
Обычно LLM стараются писать доказательства целиком, но это слишком сложно и ненадёжно.
AlphaEvolve идёт другим путём: он не пишет доказательства сам, а генерирует новые маленькие элементы *конструкции (gadgets)*.
Эти кусочки можно быстро проверить автоматикой, и если они работают, их можно собрать в более крупные теоремы.
📈 Что удалось найти
- Новый результат для задачи MAX-4-CUT (Это задача из теории алгоритмов и комбинаторной оптимизации, разновидность классической задачи MAX-CUT), с конструкцией, которую раньше никто не придумывал.
- Сильные новые нижние границы для задач на случайных графах, включая работу с Ramanujan graphs.
- Проверка теорем стала в 10 000 раз быстрее, чем в обычных методах.
🧩 Зачем это нужно
- Математика требует 100% точности - и тут AI помогает именно как генератор идей, а проверка остаётся строгой и надёжной.
- Такой подход экономит годы человеческой работы и открывает дорогу к новым теоремам и алгоритмам.
📄 Подробнее: research.google/blog/ai-as-a-research-partner-advancing-theoretical-computer-science-with-alphaevolve/
@ai_machinelearning_big_data
#AI #Math #DeepMind #Research
👍320👏154🔥50🤓23😁21🎉16🤩16😢13👌13🤔11🥰5
🎥 Two Minute Papers выпустили 22-минутное интервью с Джоном Джампером, нобелевским лауреатом и лидом команды DeepMind, создавшей AlphaFold
В беседе Джон Джампер рассказывает, как появилось AlphaFold. Он объясняет, что проект начинался как почти недостижимый идеал: попытка научиться предсказывать структуру белков с точностью, которая раньше казалась невозможной.
Ключевые моменты видео:
Что такое AlphaFold: Система глубокого обучения, которая предсказывает точную трехмерную структуру белка (его рабочую форму) на основе его аминокислотной последовательности.
Революция Скорости: AlphaFold выполняет задачу, которая ранее занимала год и стоила $100 000, всего за 5–10 минут с точностью, близкой к экспериментальной.
Масштаб Влияния: Предсказаны структуры 200 миллионов белков (все известные науке), что сделало AlphaFold фундаментальным инструментом для миллионов ученых в области разработки лекарств и биологии.
Удивительные Открытия: Джампер делится воспоминаниями о том, как команда сомневалась в успехе из-за "слишком легкого" роста производительности, и как модель научилась неявно предсказывать белковые комплексы и даже области, не имеющие фиксированной структуры ("беспорядок").
Будущее: AlphaFold является первым ИИ, который достиг "сверхчеловеческого" уровня в науке, и, по прогнозам, повлияет на почти каждое достижение в современной медицине в ближайшие 20 лет.
✔️ Смотреть интервью: https://www.youtube.com/watch?v=Vhcwjzeukts
@ai_machinelearning_big_data
#DeepMind #google #AlphaFold
В беседе Джон Джампер рассказывает, как появилось AlphaFold. Он объясняет, что проект начинался как почти недостижимый идеал: попытка научиться предсказывать структуру белков с точностью, которая раньше казалась невозможной.
Ключевые моменты видео:
Что такое AlphaFold: Система глубокого обучения, которая предсказывает точную трехмерную структуру белка (его рабочую форму) на основе его аминокислотной последовательности.
Революция Скорости: AlphaFold выполняет задачу, которая ранее занимала год и стоила $100 000, всего за 5–10 минут с точностью, близкой к экспериментальной.
Масштаб Влияния: Предсказаны структуры 200 миллионов белков (все известные науке), что сделало AlphaFold фундаментальным инструментом для миллионов ученых в области разработки лекарств и биологии.
Удивительные Открытия: Джампер делится воспоминаниями о том, как команда сомневалась в успехе из-за "слишком легкого" роста производительности, и как модель научилась неявно предсказывать белковые комплексы и даже области, не имеющие фиксированной структуры ("беспорядок").
Будущее: AlphaFold является первым ИИ, который достиг "сверхчеловеческого" уровня в науке, и, по прогнозам, повлияет на почти каждое достижение в современной медицине в ближайшие 20 лет.
@ai_machinelearning_big_data
#DeepMind #google #AlphaFold
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62❤19🔥15🥱2🤣2⚡1❤🔥1🤔1