Feature Selection with Stochastic Optimization Algorithms
https://machinelearningmastery.com/feature-selection-with-optimization/
@ai_machinelearning_big_data
https://machinelearningmastery.com/feature-selection-with-optimization/
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 DeiT: Data-efficient Image Transformers
Gittub: https://github.com/facebookresearch/deit
Facebook’s research: https://ai.facebook.com/blog/data-efficient-image-transformers-a-promising-new-technique-for-image-classification/
Paper: https://arxiv.org/abs/2012.12877v1
Vision Transformer: https://github.com/lucidrains/vit-pytorch
@ai_machinelearning_big_data
Gittub: https://github.com/facebookresearch/deit
Facebook’s research: https://ai.facebook.com/blog/data-efficient-image-transformers-a-promising-new-technique-for-image-classification/
Paper: https://arxiv.org/abs/2012.12877v1
Vision Transformer: https://github.com/lucidrains/vit-pytorch
@ai_machinelearning_big_data
👍1
🌐 Global Context Networks
Github: https://github.com/xvjiarui/GCNet
Paper: https://arxiv.org/abs/2012.13375v1
@ai_machinelearning_big_data
Github: https://github.com/xvjiarui/GCNet
Paper: https://arxiv.org/abs/2012.13375v1
@ai_machinelearning_big_data
Check the data science channel there you will find a lot of articles, links and advanced researches .
Join and learn hot topics of data science @opendatascience
Join and learn hot topics of data science @opendatascience
Forwarded from Data Science by ODS.ai 🦜
Solving Mixed Integer Programs Using Neural Networks
Article on speeding up Mixed Integer Programs with ML. Mixed Integer Programs are usually NP-hard problems:
- Problems solved with linear programming
- Production planning (pipeline optimization)
- Scheduling / Dispatching
Or any problems where integers represent various decisions (including some of the graph problems).
ArXiV: https://arxiv.org/abs/2012.13349
Wikipedia on Mixed Integer Programming: https://en.wikipedia.org/wiki/Integer_programming
#NPhard #MILP #DeepMind #productionml #linearprogramming #optimizationproblem
Article on speeding up Mixed Integer Programs with ML. Mixed Integer Programs are usually NP-hard problems:
- Problems solved with linear programming
- Production planning (pipeline optimization)
- Scheduling / Dispatching
Or any problems where integers represent various decisions (including some of the graph problems).
ArXiV: https://arxiv.org/abs/2012.13349
Wikipedia on Mixed Integer Programming: https://en.wikipedia.org/wiki/Integer_programming
#NPhard #MILP #DeepMind #productionml #linearprogramming #optimizationproblem
❤1👍1
Soft-IntroVAE: Analyzing and Improving Introspective Variational Autoencoders
Project: https://taldatech.github.io/soft-intro-vae-web/
Github: https://github.com/taldatech/soft-intro-vae-pytorch
Paper: https://arxiv.org/abs/2012.13253v1
@ai_machinelearning_big_data
Project: https://taldatech.github.io/soft-intro-vae-web/
Github: https://github.com/taldatech/soft-intro-vae-pytorch
Paper: https://arxiv.org/abs/2012.13253v1
@ai_machinelearning_big_data
💉 MeDAL: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining
Github: https://github.com/BruceWen120/medal
Paper: https://arxiv.org/abs/2012.13978v1
Dataset: https://www.kaggle.com/xhlulu/medal-emnlp
Pre-trained: https://huggingface.co/xhlu/electra-medal
@ai_machinelearning_big_data
Github: https://github.com/BruceWen120/medal
Paper: https://arxiv.org/abs/2012.13978v1
Dataset: https://www.kaggle.com/xhlulu/medal-emnlp
Pre-trained: https://huggingface.co/xhlu/electra-medal
@ai_machinelearning_big_data
🧠 2020: A Year Full of Amazing AI Papers — A Review
https://www.kdnuggets.com/2020/12/2020-amazing-ai-papers.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2020/12/2020-amazing-ai-papers.html
@ai_machinelearning_big_data
🎨 Colorization Transformer
Github: https://github.com/satoshiiizuka/siggraphasia2019_remastering
Results: http://iizuka.cs.tsukuba.ac.jp/projects/remastering/en/index.html
Paper: https://openreview.net/forum?id=5NA1PinlGFu
@ai_machinelearning_big_data
Github: https://github.com/satoshiiizuka/siggraphasia2019_remastering
Results: http://iizuka.cs.tsukuba.ac.jp/projects/remastering/en/index.html
Paper: https://openreview.net/forum?id=5NA1PinlGFu
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
🗒 Machine Learning Cheat Sheets
https://sites.google.com/view/datascience-cheat-sheets
Machine Learning Animations: https://sites.google.com/view/mlingifs#h.341bzfgiuxfx
@ai_machinelearning_big_data
https://sites.google.com/view/datascience-cheat-sheets
Machine Learning Animations: https://sites.google.com/view/mlingifs#h.341bzfgiuxfx
@ai_machinelearning_big_data
👁🗨 LambdaNetworks: Modeling long-range Interactions without Attention
New approach to image recognition that reaches SOTA on ImageNet
Github: https://github.com/leaderj1001/LambdaNetworks
Paper: https://openreview.net/forum?id=xTJEN-ggl1b
Fork: https://github.com/leaderj1001/LambdaNetworks
@ai_machinelearning_big_data
New approach to image recognition that reaches SOTA on ImageNet
Github: https://github.com/leaderj1001/LambdaNetworks
Paper: https://openreview.net/forum?id=xTJEN-ggl1b
Fork: https://github.com/leaderj1001/LambdaNetworks
@ai_machinelearning_big_data
Not All Memories are Created Equal: Learning to Expire
Github: https://github.com/lucidrains/learning-to-expire-pytorch
Paper: https://openreview.net/forum?id=ZVBtN6B_6i7
@ai_machinelearning_big_data
Github: https://github.com/lucidrains/learning-to-expire-pytorch
Paper: https://openreview.net/forum?id=ZVBtN6B_6i7
@ai_machinelearning_big_data
🦠 COVID-Affinity-Model
Github: https://github.com/AlexTS1980/COVID-Affinity-Model
Paper: https://www.medrxiv.org/content/10.1101/2020.12.29.20248987v1.full.pdf
@ai_machinelearning_big_data
Github: https://github.com/AlexTS1980/COVID-Affinity-Model
Paper: https://www.medrxiv.org/content/10.1101/2020.12.29.20248987v1.full.pdf
@ai_machinelearning_big_data
🚀 DALL·E is a 12-billion parameter version of GPT-3 trained to generate images from text descriptions
Introduction: https://openai.com/blog/tags/multimodal/
Deepmind Blog: https://openai.com/blog/dall-e/
Github: https://github.com/openai/CLIP
Paper: https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language.pdf
Colab: https://colab.research.google.com/github/openai/clip/blob/master/Interacting_with_CLIP.ipynb
@ai_machinelearning_big_data
Introduction: https://openai.com/blog/tags/multimodal/
Deepmind Blog: https://openai.com/blog/dall-e/
Github: https://github.com/openai/CLIP
Paper: https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language.pdf
Colab: https://colab.research.google.com/github/openai/clip/blob/master/Interacting_with_CLIP.ipynb
@ai_machinelearning_big_data
👍1
🦾 Volumetric Grasping Network.
Github: https://github.com/ethz-asl/vgn
Paper: https://arxiv.org/abs/2101.01132
Video: https://www.youtube.com/watch?v=FXjvFDcV6E0&feature=youtu.be
@ai_machinelearning_big_data
Github: https://github.com/ethz-asl/vgn
Paper: https://arxiv.org/abs/2101.01132
Video: https://www.youtube.com/watch?v=FXjvFDcV6E0&feature=youtu.be
@ai_machinelearning_big_data
🔇 Deep Noise Suppression Challenge – ICASSP 2021
Github: https://github.com/microsoft/DNS-Challenge
Paper: https://arxiv.org/abs/2101.01902v1
Training and test datasets: https://github.com/microsoft/DNS-Challenge/tree/master/datasets
Challenge: https://www.microsoft.com/en-us/research/academic-program/deep-noise-suppression-challenge-icassp-2021/
@ai_machinelearning_big_data
Github: https://github.com/microsoft/DNS-Challenge
Paper: https://arxiv.org/abs/2101.01902v1
Training and test datasets: https://github.com/microsoft/DNS-Challenge/tree/master/datasets
Challenge: https://www.microsoft.com/en-us/research/academic-program/deep-noise-suppression-challenge-icassp-2021/
@ai_machinelearning_big_data
GitHub
GitHub - microsoft/DNS-Challenge: This repo contains the scripts, models, and required files for the Deep Noise Suppression (DNS)…
This repo contains the scripts, models, and required files for the Deep Noise Suppression (DNS) Challenge. - GitHub - microsoft/DNS-Challenge: This repo contains the scripts, models, and required...
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
📛Sharded: A New Technique To Double The Size Of PyTorch Models
Article: https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
Habr ru: https://habr.com/ru/company/skillfactory/blog/536394/
ZeRO: Memory Optimizations Paper: https://arxiv.org/abs/1910.02054
@ai_machinelearning_big_data
Article: https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
Habr ru: https://habr.com/ru/company/skillfactory/blog/536394/
ZeRO: Memory Optimizations Paper: https://arxiv.org/abs/1910.02054
@ai_machinelearning_big_data
🔝 Top 10 Computer Vision Papers 2020
https://www.kdnuggets.com/2021/01/top-10-computer-vision-papers-2020.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2021/01/top-10-computer-vision-papers-2020.html
@ai_machinelearning_big_data
Datasets
Datasets collected for network science, deep learning and general machine learning research.
Github: https://github.com/benedekrozemberczki/datasets
Paper: https://arxiv.org/abs/2101.03091v1
@ai_machinelearning_big_data
Datasets collected for network science, deep learning and general machine learning research.
Github: https://github.com/benedekrozemberczki/datasets
Paper: https://arxiv.org/abs/2101.03091v1
@ai_machinelearning_big_data
GitHub
GitHub - benedekrozemberczki/datasets: A repository of pretty cool datasets that I collected for network science and machine learning…
A repository of pretty cool datasets that I collected for network science and machine learning research. - benedekrozemberczki/datasets