379K subscribers
4.37K photos
835 videos
17 files
4.86K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
📸 Old Photo Restoration (Official PyTorch Implementation)

Restore old photos that suffer from severe degradation through a deep learning approace.

http://raywzy.com/Old_Photo/

Github: https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life

Paper: https://arxiv.org/pdf/2009.07047v1.pdf

Colab: https://colab.research.google.com/drive/1NEm6AsybIiC5TwTU_4DqDkQO0nFRB-uA

@ai_machinelearning_big_data
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Facebook AI Releases ‘Dynabench’, A Dynamic Benchmark Testing Platform For Machine Learning Systems

Articel: https://ai.facebook.com/blog/dynabench-rethinking-ai-benchmarking/

Project: https://dynabench.org/

@ai_machinelearning_big_data
Graph Normalization

Learning Graph Normalization for Graph Neural Networks

Github: https://github.com/cyh1112/GraphNormalization

Paper: https://arxiv.org/abs/2009.11746v1

@ai_machinelearning_big_data
CaGNet: Context-aware Feature Generation for Zero-shot Semantic Segmentation.

Github: https://github.com/bcmi/CaGNet-Zero-Shot-Semantic-Segmentation

Paper: https://arxiv.org/abs/2009.12232v1

@ai_machinelearning_big_data
Rotated Binary Neural Network

Pytorch implementation of RBNN.

Github: https://github.com/lmbxmu/RBNN

Paper: https://arxiv.org/abs/2009.13055

@ai_machinelearning_big_data
aLRP Loss: A Ranking-based, Balanced Loss Function

Unifying Classification and Localisation in Object Detection.

💻 Github: https://github.com/kemaloksuz/aLRPLoss

📎 Dataset: https://cocodataset.org/#download

🗒 Paper: https://arxiv.org/abs/2009.13592v1

@ai_machinelearning_big_data
From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering

Gitgub: https://github.com/HazyResearch/HypHC

Paper: https://arxiv.org/abs/2010.00402
Introduction to Pytorch Code Examples

An overview of training, models, loss functions and optimizers

Free course: https://cs230.stanford.edu/blog/pytorch/

Lectures: https://cs230.stanford.edu/lecture/

Github: https://github.com/thanhhff/CS230-Deep-Learning

@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
RF: Learning a General Radiance Field for 3D Scene Representation and Rendering

Powerful implicit neural function that can represent and render arbitrarily complex 3D scenes in a single network only from 2D observations.

Github: https://github.com/alextrevithick/GRF

Paper: https://arxiv.org/abs/2010.04595v1

@ai_machinelearning_big_data