#یادگیری عمیق
یادگیری ماشین
#بیومدیکال
یک سوال زیبا و با یک پاسخ عالی
#سوال
A goal of mine is to be able to work in a job that is focused on research in Deep Learning. This seems like a difficult task in that my background is primarily in biomedical sciences with no formal computer science training. Do you think it is necessary to have a formal computer science education to contribute to Deep Learning research teams? Also what are your favorite 3 papers on Deep Learning (or the most recent 3 papers you've read)?
#پاسخ از دانشجو Andrew NG
There are many ways to contribute to Machine Learning research (or industry) teams. One is bringing knowledge from your field (BioMed Sciences) in addition to your ML training. For instance, doctors with ML training contribute significantly to ML teams to solve problems in Radiology, Cardiology and Palliative Care among others.
You can also contribute to a ML team outside your area of expertise as a Data Scientist or Machine Learning Engineer. In terms of what training would be required, I'd suggest to check out the list from our Machine Learning Engineer Career Program ( https://www.deeplearning.ai/careers/). This is quite extensive and you might not need to master everything perfectly to contribute in a ML team, but it will give you an idea:
Deep learning. You should be able to understand and apply major deep learning methods, including neural network training, regularization, optimization methods (gradient descent, Adam), and be familiar with major neural network architecture types such as Convolutional Networks, RNN/LSTM. Completion of the deeplearning.ai specialization is sufficient to meet this criteria.
Machine learning. You should be able to understand and apply major machine learning methods, such as logistic regression, SVM, Decision Trees, Principal Component Analysis and K-means. Completion of Andrew Ng’s Machine Learning course on Coursera is sufficient to meet this criteria.
Implementation. You should have prior experience taking a dataset, cleaning it if necessary, and applying a learning algorithm to it to get a result. You should be able to implement a learning algorithm “from scratch” using a framework such as Tensorflow, Pytorch, Caffe, etc.
General coding. You should be able to code non-trivial functions in object oriented programming, such as popular sorting or search algorithms. You should know how to use your terminal, and work with version control systems (Git). Software engineering experience such as working with relational databases, APIs, and building the back-end of web or mobile applications is helpful but is not required.
Mathematics (including probabilities and statistics.) You should be able to use mathematical notations and linear algebra (matrix/vector operations, dot products, etc.), and understand basic probability theory (distributions, independence, density functions, etc.) as well as statistics (mean, variance, median, quantiles, co-variance, etc.)
I've tried to learn more about DL applied to Point Clouds recently, so the 3 most recent papers I've read are:
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (Qi, Su et al.)
PointCNN (Li et al.)
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs (Landrieu & Simonovsky)
3 papers I like a lot:
Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al.) if you'd like to learn more about Machine Translation.
FaceNet: A Unified Embedding for Face Recognition and Clustering (Schroff et al.) if you'd like to learn more about Face Recognition.
YOLO9000: Better, Faster, Stronger (Redmon et al.) if you'd like to learn more about Object Detection.
Hope it helps,
منبع:
https://www.deeplearning.ai/forums/community/general-forum/meet-the-deeplearning-ai-team/
با کاناله
https://xn--r1a.website/Machinelearning_Kartal/1468
نیز همراه باشید 🌿🌿🌿💭💭💭🌹🌹🌹
یادگیری ماشین
#بیومدیکال
یک سوال زیبا و با یک پاسخ عالی
#سوال
A goal of mine is to be able to work in a job that is focused on research in Deep Learning. This seems like a difficult task in that my background is primarily in biomedical sciences with no formal computer science training. Do you think it is necessary to have a formal computer science education to contribute to Deep Learning research teams? Also what are your favorite 3 papers on Deep Learning (or the most recent 3 papers you've read)?
#پاسخ از دانشجو Andrew NG
There are many ways to contribute to Machine Learning research (or industry) teams. One is bringing knowledge from your field (BioMed Sciences) in addition to your ML training. For instance, doctors with ML training contribute significantly to ML teams to solve problems in Radiology, Cardiology and Palliative Care among others.
You can also contribute to a ML team outside your area of expertise as a Data Scientist or Machine Learning Engineer. In terms of what training would be required, I'd suggest to check out the list from our Machine Learning Engineer Career Program ( https://www.deeplearning.ai/careers/). This is quite extensive and you might not need to master everything perfectly to contribute in a ML team, but it will give you an idea:
Deep learning. You should be able to understand and apply major deep learning methods, including neural network training, regularization, optimization methods (gradient descent, Adam), and be familiar with major neural network architecture types such as Convolutional Networks, RNN/LSTM. Completion of the deeplearning.ai specialization is sufficient to meet this criteria.
Machine learning. You should be able to understand and apply major machine learning methods, such as logistic regression, SVM, Decision Trees, Principal Component Analysis and K-means. Completion of Andrew Ng’s Machine Learning course on Coursera is sufficient to meet this criteria.
Implementation. You should have prior experience taking a dataset, cleaning it if necessary, and applying a learning algorithm to it to get a result. You should be able to implement a learning algorithm “from scratch” using a framework such as Tensorflow, Pytorch, Caffe, etc.
General coding. You should be able to code non-trivial functions in object oriented programming, such as popular sorting or search algorithms. You should know how to use your terminal, and work with version control systems (Git). Software engineering experience such as working with relational databases, APIs, and building the back-end of web or mobile applications is helpful but is not required.
Mathematics (including probabilities and statistics.) You should be able to use mathematical notations and linear algebra (matrix/vector operations, dot products, etc.), and understand basic probability theory (distributions, independence, density functions, etc.) as well as statistics (mean, variance, median, quantiles, co-variance, etc.)
I've tried to learn more about DL applied to Point Clouds recently, so the 3 most recent papers I've read are:
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (Qi, Su et al.)
PointCNN (Li et al.)
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs (Landrieu & Simonovsky)
3 papers I like a lot:
Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al.) if you'd like to learn more about Machine Translation.
FaceNet: A Unified Embedding for Face Recognition and Clustering (Schroff et al.) if you'd like to learn more about Face Recognition.
YOLO9000: Better, Faster, Stronger (Redmon et al.) if you'd like to learn more about Object Detection.
Hope it helps,
منبع:
https://www.deeplearning.ai/forums/community/general-forum/meet-the-deeplearning-ai-team/
با کاناله
https://xn--r1a.website/Machinelearning_Kartal/1468
نیز همراه باشید 🌿🌿🌿💭💭💭🌹🌹🌹
www.deeplearning.ai
Careers - DeepLearning.AI
Join the DeepLearning.AI team working to make AI education accessible to the entire world!
#هشدار
اخیرا باز موج حمله به #تلگرام برگشته و پیام هایی از طرف اشخاصی که تلگرام #غیر اصل نصب کرده اند به دیگران یا گروه ها ارسال می شود. که این باعث از دست دادن گروه ها یا حتی ممکن هست با ارسال پیام های بد باعث دلخوری عزیزانتان شود. بنابراین توصیه می گردد که هیچ یک از نسخه های تلگرام را به غیر از نسخه مؤوجود در گوگل پلی نصب نکرده و اگر کرده اید پاک کنید و دوباره از گوگل پلی یا همان پلی استور نصب کنید.
با تشکر
کانال
@machinelearning_kartal
اخیرا باز موج حمله به #تلگرام برگشته و پیام هایی از طرف اشخاصی که تلگرام #غیر اصل نصب کرده اند به دیگران یا گروه ها ارسال می شود. که این باعث از دست دادن گروه ها یا حتی ممکن هست با ارسال پیام های بد باعث دلخوری عزیزانتان شود. بنابراین توصیه می گردد که هیچ یک از نسخه های تلگرام را به غیر از نسخه مؤوجود در گوگل پلی نصب نکرده و اگر کرده اید پاک کنید و دوباره از گوگل پلی یا همان پلی استور نصب کنید.
با تشکر
کانال
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#فان
وقتی وقتت برای تحویل پروژه کمه یک سیستم قدرتمند و یک کار غیرمعقول نیازه
😁😁😁😁
@machinelearning_kartal
وقتی وقتت برای تحویل پروژه کمه یک سیستم قدرتمند و یک کار غیرمعقول نیازه
😁😁😁😁
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 03 (Optimazation(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 03 (Optimazation(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 04 (Random Initial(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 04 (Random Initial(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 05 (Choosing the Number(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_Clustering
#Video 05 (Choosing the Number(13 min) )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
Forwarded from Machine learning application (Kartal)
#توجه
#پرداخت های🌿 #خارجی💭 فقط با نرخ روز بازار بدون هیچ هزینه اضافه🌹 فقط برای دانشجویان🌹 و محققان💭 دانشگاهی
دوستان سلام
چند روز پیش یکی از اعضای محترم پیام دادند که برای ژورنال پولی که ۳۵۰ دلار امریکا هزینه اش بود ۳۵۰+۸۵ دلار با نرخ روز بازار پرداخت کرده است. و می گفت خیلی سنگینه برایم منم موقع دانشجویی چنین اوضاع رو چشیده و دیده ام بنابراین تصمیم گرفته ام برای اعضای کانال که همیشه لطف دارن بهم امکان پرداخت این جور هزینه ها رو مهیا کنم احتمالا خبر دارین که بنده لهستان هستم و مستر کارت و ویزا کارت دارم هر کسی از دوستان نیاز داشتند لطفا خبر بدهند تا من پرداخت هایشان را انجام بدهم.
🌿🌿🌿💭💭💭🌹🌹🌹
شرایط پرداخت هم به این صورت هست که بنده پساز دریافت اطلاعات پرداختی شما، فیش پیش پرداخت خدمتتون ارسال می نمایم تا ادامه کارها انجام شود. قابل ذکر هست هزینه فقط هزینه خواسته شده از شما به دلار یا یورو به نرخ روز بازار حساب خواهد شد.
امیدوارم بتونم برای دوستان عزیزم کمک و یاری کرده باشم.
برای دوستان خود هم اطلاع رسانی نمایید.
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1381
همراه باشید.
#پرداخت های🌿 #خارجی💭 فقط با نرخ روز بازار بدون هیچ هزینه اضافه🌹 فقط برای دانشجویان🌹 و محققان💭 دانشگاهی
دوستان سلام
چند روز پیش یکی از اعضای محترم پیام دادند که برای ژورنال پولی که ۳۵۰ دلار امریکا هزینه اش بود ۳۵۰+۸۵ دلار با نرخ روز بازار پرداخت کرده است. و می گفت خیلی سنگینه برایم منم موقع دانشجویی چنین اوضاع رو چشیده و دیده ام بنابراین تصمیم گرفته ام برای اعضای کانال که همیشه لطف دارن بهم امکان پرداخت این جور هزینه ها رو مهیا کنم احتمالا خبر دارین که بنده لهستان هستم و مستر کارت و ویزا کارت دارم هر کسی از دوستان نیاز داشتند لطفا خبر بدهند تا من پرداخت هایشان را انجام بدهم.
🌿🌿🌿💭💭💭🌹🌹🌹
شرایط پرداخت هم به این صورت هست که بنده پساز دریافت اطلاعات پرداختی شما، فیش پیش پرداخت خدمتتون ارسال می نمایم تا ادامه کارها انجام شود. قابل ذکر هست هزینه فقط هزینه خواسته شده از شما به دلار یا یورو به نرخ روز بازار حساب خواهد شد.
امیدوارم بتونم برای دوستان عزیزم کمک و یاری کرده باشم.
برای دوستان خود هم اطلاع رسانی نمایید.
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1381
همراه باشید.
با سلام همراهان عزیز
همانطور که مطع هستید بنده عضو تیم AMBER biometric هستم در واقع این پروژه اتحادیه اروپا
https://www.amber-biometrics.eu/
امروز ورکشاپ میانسال پروژه رو داشتیم بهم اطلاع دادند که یکی از استاتید راهنمایمان
Editor-in-Chief
Patrizio Campisi
University of Roma TRE
Rome, Italy
ادیتور ژورنال معتبر
IEEE Transactions on Information Forensics and Security
شده هست که یک ژورنال بسیار معتبر و عالی هست.
به عرضتان می رسانم اگر احیانا مقاله خوبی دستتون دارید و به فکر گرفتن اکسپت هستید می تونید روی بنده حساب کنید که بتونیم چاپ برسانیم.
شایان ذکر هست که این اطلاع رسانی به این دلیل نیست که هر مقاله ای رو اونجا بفرستیم فقط مقاله ای که ارزش چاپ داشته باشد و فقط مشکل زمان و مشکل ایرانی بودن و مشکل سختگیری اینا رو می تونم کمتر کنم.
اگر مقاله داشتید لطفا اطلاع دهید. جزئیات ژورنال را از وب سایت اش بخونید.
https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=10206
و فقط
فقط توجه داشته باشید که مقاله تان حتما در اسکوپ این ژورنال باشد. با تشکر
🌿🌿🌿💭💭💭🌹🌹🌹
جهت تماس با ای دی در پروفایل کانال تماس بگیرید.
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1483
همراه باشید
همانطور که مطع هستید بنده عضو تیم AMBER biometric هستم در واقع این پروژه اتحادیه اروپا
https://www.amber-biometrics.eu/
امروز ورکشاپ میانسال پروژه رو داشتیم بهم اطلاع دادند که یکی از استاتید راهنمایمان
Editor-in-Chief
Patrizio Campisi
University of Roma TRE
Rome, Italy
ادیتور ژورنال معتبر
IEEE Transactions on Information Forensics and Security
شده هست که یک ژورنال بسیار معتبر و عالی هست.
به عرضتان می رسانم اگر احیانا مقاله خوبی دستتون دارید و به فکر گرفتن اکسپت هستید می تونید روی بنده حساب کنید که بتونیم چاپ برسانیم.
شایان ذکر هست که این اطلاع رسانی به این دلیل نیست که هر مقاله ای رو اونجا بفرستیم فقط مقاله ای که ارزش چاپ داشته باشد و فقط مشکل زمان و مشکل ایرانی بودن و مشکل سختگیری اینا رو می تونم کمتر کنم.
اگر مقاله داشتید لطفا اطلاع دهید. جزئیات ژورنال را از وب سایت اش بخونید.
https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=10206
و فقط
فقط توجه داشته باشید که مقاله تان حتما در اسکوپ این ژورنال باشد. با تشکر
🌿🌿🌿💭💭💭🌹🌹🌹
جهت تماس با ای دی در پروفایل کانال تماس بگیرید.
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1483
همراه باشید
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 01 (Motivate )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 01 (Motivate )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 02 (Motivate 2 )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 02 (Motivate 2 )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 03 (PCA Motivate )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 03 (PCA Motivate )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
Media is too big
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 04 (PCA Algortithm )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 04 (PCA Algortithm )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 05 (select K in PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 05 (select K in PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
#آپلای
🌿🌿🌿💭💭💭🌹🌹🌹
دوستان از دست ندین خیلی موقعیت عالی هست اش
Dear Jalil Nourmohammadi-Khiarak,
The Autonomous Vision Group (AVG) at MPI-IS / University of Tübingen currently has one open PhD position on interpretable representation learning
(Flyer: http://www.cvlibs.net/downloads/flyer_2018_phd_interpretable.pdf)
as well as one open visiting PhD student position (funded via a scholarship).
If you are interested, apply to: avg-apply@tue.mpg.de
Before applying, please read: http://www.cvlibs.net/applications.php
Application deadline: 5.12.2018
Best,
Andreas Geiger
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1488
همراه باشید
🌿🌿🌿💭💭💭🌹🌹🌹
دوستان از دست ندین خیلی موقعیت عالی هست اش
Dear Jalil Nourmohammadi-Khiarak,
The Autonomous Vision Group (AVG) at MPI-IS / University of Tübingen currently has one open PhD position on interpretable representation learning
(Flyer: http://www.cvlibs.net/downloads/flyer_2018_phd_interpretable.pdf)
as well as one open visiting PhD student position (funded via a scholarship).
If you are interested, apply to: avg-apply@tue.mpg.de
Before applying, please read: http://www.cvlibs.net/applications.php
Application deadline: 5.12.2018
Best,
Andreas Geiger
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1488
همراه باشید
#خبر
#بیومتریک
🌹🌹🌹🌿🌿🌿💭💭💭
در مورد فبک سدن اثرانگشت در بیومتریک در
بخوانیم...
This weeks interesting link is from The Guardian: Fake fingerprints can imitate real ones in biometric systems – research. This is a very interesting article that sees specialist researchers generating artificial fingerprints to use for Master Fingerprint capability but also to better fool proof biometric systems.
ادامه خبر وْ توضیحات کامل از وب سایت زیر بخوانید.
https://www.theguardian.com/technology/2018/nov/15/fake-fingerprints-can-imitate-real-fingerprints-in-biometric-systems-research
🌹🌹🌹🌿🌿🌿💭💭💭
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1489
همراه باشید. و به اشتراک بگذارید.
🌹🌹🌹🌿🌿🌿💭💭💭
#بیومتریک
🌹🌹🌹🌿🌿🌿💭💭💭
در مورد فبک سدن اثرانگشت در بیومتریک در
بخوانیم...
This weeks interesting link is from The Guardian: Fake fingerprints can imitate real ones in biometric systems – research. This is a very interesting article that sees specialist researchers generating artificial fingerprints to use for Master Fingerprint capability but also to better fool proof biometric systems.
ادامه خبر وْ توضیحات کامل از وب سایت زیر بخوانید.
https://www.theguardian.com/technology/2018/nov/15/fake-fingerprints-can-imitate-real-fingerprints-in-biometric-systems-research
🌹🌹🌹🌿🌿🌿💭💭💭
با کانال
https://xn--r1a.website/Machinelearning_Kartal/1489
همراه باشید. و به اشتراک بگذارید.
🌹🌹🌹🌿🌿🌿💭💭💭
the Guardian
Fake fingerprints can imitate real ones in biometric systems – research
DeepMasterPrints created by a machine learning technique have error rate of only one in five
Machine learning application (Kartal) pinned «#توجه #پرداخت های🌿 #خارجی💭 فقط با نرخ روز بازار بدون هیچ هزینه اضافه🌹 فقط برای دانشجویان🌹 و محققان💭 دانشگاهی دوستان سلام چند روز پیش یکی از اعضای محترم پیام دادند که برای ژورنال پولی که ۳۵۰ دلار امریکا هزینه اش بود ۳۵۰+۸۵ دلار با نرخ روز بازار پرداخت کرده…»
Forwarded from Machine learning application (Kartal)
#Andrew_NG
شرایط خاص #استخدام در سایت Andrew NG
اگر از اعضای کانال فکر مئ کنند که توانایی های زیر را دارید پس بدونید می توانید شاگرد دانشمند هوش مصنوعی باشید. البته یه جورایی داره راه و رسم هم برای کسانی که دنبال یادگیری ماشین و عمیق هستند را نشون می ده. که خوندش خالی از لطف نیست.
AI is the new electricity. There are millions of opportunities to transform industries with artificial intelligence, but today’s AI job market is broad and undefined. It isn’t always clear to AI engineers - novices and experts alike - how to determine which opportunities best match their career interests and skill sets.
We’re looking for AI engineers of all levels who are seeking new technical roles. We’d like to learn what you’re looking for in your next opportunity, and match you with potential roles available in our affiliated communities. These are applied engineering roles spanning industries including education, manufacturing, health-care, autonomous driving, energy and transportation, robotics, media and entertainment, and more.
Who should apply
If you’re an engineer familiar with machine learning techniques, we’d like to hear from you. That means you’re probably familiar with most of the following:
Deep learning. You should be able to understand and apply major deep learning methods, including neural network training, regularization, optimization methods (gradient descent, Adam), and be familiar with major neural network architecture types such as Convolutional Networks, RNN/LSTM. Completion of the deeplearning.ai specialization is sufficient to meet this criteria.
Machine learning. You should be able to understand and apply major machine learning methods, such as logistic regression, SVM, Decision Trees, Principal Component Analysis and K-means. Completion of Andrew Ng’s Machine Learning course on Coursera is sufficient to meet this criteria.
Implementation. You should have prior experience taking a dataset, cleaning it if necessary, and applying a learning algorithm to it to get a result. You should be able to implement a learning algorithm “from scratch” using a framework such as Tensorflow, Pytorch, Caffe, etc.
General coding. You should be able to code non-trivial functions in object oriented programming, such as popular sorting or search algorithms. You should know how to use your terminal, and work with version control systems (Git). Software engineering experience such as working with relational databases, APIs, and building the back-end of web or mobile applications is helpful but is not required.
Mathematics (including probabilities and statistics.) You should be able to use mathematical notations and linear algebra (matrix/vector operations, dot products, etc.), and understand basic probability theory (distributions, independence, density functions, etc.) as well as statistics (mean, variance, median, quantiles, co-variance, etc.)
منبع:
https://www.deeplearning.ai/careers/
با ما باشید
https://xn--r1a.website/Machinelearning_Kartal/1436
و به اشتراک بگذارید.
شرایط خاص #استخدام در سایت Andrew NG
اگر از اعضای کانال فکر مئ کنند که توانایی های زیر را دارید پس بدونید می توانید شاگرد دانشمند هوش مصنوعی باشید. البته یه جورایی داره راه و رسم هم برای کسانی که دنبال یادگیری ماشین و عمیق هستند را نشون می ده. که خوندش خالی از لطف نیست.
AI is the new electricity. There are millions of opportunities to transform industries with artificial intelligence, but today’s AI job market is broad and undefined. It isn’t always clear to AI engineers - novices and experts alike - how to determine which opportunities best match their career interests and skill sets.
We’re looking for AI engineers of all levels who are seeking new technical roles. We’d like to learn what you’re looking for in your next opportunity, and match you with potential roles available in our affiliated communities. These are applied engineering roles spanning industries including education, manufacturing, health-care, autonomous driving, energy and transportation, robotics, media and entertainment, and more.
Who should apply
If you’re an engineer familiar with machine learning techniques, we’d like to hear from you. That means you’re probably familiar with most of the following:
Deep learning. You should be able to understand and apply major deep learning methods, including neural network training, regularization, optimization methods (gradient descent, Adam), and be familiar with major neural network architecture types such as Convolutional Networks, RNN/LSTM. Completion of the deeplearning.ai specialization is sufficient to meet this criteria.
Machine learning. You should be able to understand and apply major machine learning methods, such as logistic regression, SVM, Decision Trees, Principal Component Analysis and K-means. Completion of Andrew Ng’s Machine Learning course on Coursera is sufficient to meet this criteria.
Implementation. You should have prior experience taking a dataset, cleaning it if necessary, and applying a learning algorithm to it to get a result. You should be able to implement a learning algorithm “from scratch” using a framework such as Tensorflow, Pytorch, Caffe, etc.
General coding. You should be able to code non-trivial functions in object oriented programming, such as popular sorting or search algorithms. You should know how to use your terminal, and work with version control systems (Git). Software engineering experience such as working with relational databases, APIs, and building the back-end of web or mobile applications is helpful but is not required.
Mathematics (including probabilities and statistics.) You should be able to use mathematical notations and linear algebra (matrix/vector operations, dot products, etc.), and understand basic probability theory (distributions, independence, density functions, etc.) as well as statistics (mean, variance, median, quantiles, co-variance, etc.)
منبع:
https://www.deeplearning.ai/careers/
با ما باشید
https://xn--r1a.website/Machinelearning_Kartal/1436
و به اشتراک بگذارید.
www.deeplearning.ai
Careers - DeepLearning.AI
Join the DeepLearning.AI team working to make AI education accessible to the entire world!
#خبر
#مقاله
#دکترا
#نیچر
بیست توصیه برای کسانی که می خوان وارد دکترا شوند.
مقاله چاپ شده در نیچر
https://www.nature.com/articles/d41586-018-07332-x
ممنون از ارسال جناب مهدی فروردین عزیز.
با ما باشید
https://xn--r1a.website/Machinelearning_Kartal/1489
و به اشتراک بگذارید.
#مقاله
#دکترا
#نیچر
بیست توصیه برای کسانی که می خوان وارد دکترا شوند.
مقاله چاپ شده در نیچر
https://www.nature.com/articles/d41586-018-07332-x
ممنون از ارسال جناب مهدی فروردین عزیز.
با ما باشید
https://xn--r1a.website/Machinelearning_Kartal/1489
و به اشتراک بگذارید.
Nature
Twenty things I wish I’d known when I started my PhD
Nature - Recent PhD graduate Lucy A. Taylor shares the advice she and her colleagues wish they had received.
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 06 (Reconstruct in PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 06 (Reconstruct in PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
This media is not supported in your browser
VIEW IN TELEGRAM
#Learning
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 07 (Advice for PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal
N: machine learning (Coursera.org)
T: Scientist Andrew NG
L: English
#Week_08_01_Dimension Reduction
#Video 07 (Advice for PCA )
لطفا به دوستان ارسال کنید
@machinelearning_kartal