Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Коалиция независимых издателей подала антимонопольную жалобу на Google в Еврокомиссию. Они утверждают, что новая функция AI Overviews отбирает у них трафик и рекламные доходы, используя их контент без разрешения и компенсации.
Основная претензия заключается в том, что издатели не могут запретить использование своих материалов для обучения нейросетей и создания саммари, не рискуя при этом полностью исчезнуть из результатов поиска. Google же заявляет, что AI Overviews лишь помогает пользователям находить контент.
reuters.com
Сохам Парекх оказался в центре скандала, когда выяснилось, что он тайно занимал фултайм-позиции сразу в нескольких стартапах. Все началось с поста основателя Playground AI, который рассказал, что Парех умудрялся работать на 3-4 компании сразу. К обсуждению быстро подключились другие компании, подтвердившие, что тоже собеседовали или нанимали его.
Схема была проста: Парех впечатлял на технических интервью и имел активный профиль на GitHub, это и помогало ему получать офферы. Но после найма он срывал сроки и не выполнял задачи. Поймали его, заметив коммиты в репозитории другой компании во время его предполагаемого «больничного». Сам инженер объяснил свои действия тяжелым финансовым положением.
Сейчас Парекх работает в стартапе Darwin Studios, стартапе по ремикшированию видео с использованием ИИ.
theverge.com
Команда исследователей из Кореи использовала машинное обучение для решения проблемы утилизации ядерных отходов. Их целью был радиоактивный I-129, изотоп с периодом полураспада 15,7 млн лет, крайне опасный для живых организмов.
С помощью ИИ ученые нашли новый адсорбент на основе меди, хрома, железа и алюминия, который удаляет более 90% радиоактивного йода из воды. Это значительно эффективнее существующих методов.
Главное преимущество ИИ было в скорости. Вместо полного перебора комбинаций модель предсказывала самые перспективные составы, что позволило протестировать лишь 16% от всех возможных вариантов для нахождения оптимального. Команда уже патентует технологию для коммерческого применения.
phys.org
Проект ZLUDA, позволяющий запускать код CUDA на видеокартах AMD и Intel, поделились важными обновлениями после спасения от закрытия. Проект теперь ведут два фултайм-разработчика, один из которых сфокусирован на поддержке ИИ-нагрузок.
Главный фокус - запуск GPT-2 в рамках тестового проекта llm.c. Это необходимый шаг к поддержке фреймворков наподобие PyTorch. Также разработчики повышают точность вычислений, стремясь к побитовому соответствию с результатами на железе Nvidia с помощью PTX-тестов.
vosen.github.io
Китайская компания Kunlun Wanwei выпустила вторую версию своих открытых reward-моделей, которые помогают «объяснить» LLM, какие ответы считать хорошими, а какие — плохими.
Новая серия V2 обучена на огромном датасете из 26 миллионов пар оценок и включает 8 моделей разного размера. По заявлениям разработчиков, флагманская версия на 8 млрд. параметров превосходит все существующие аналоги на ключевых бенчмарках, а самая компактная, 600 по производительности почти догнала их старшую модель прошлого поколения на 27 млрд. параметров. Новое семейство уже доступно на HuggingFace.
github.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Amazon анонсировала S3 Vectors - нативную поддержку векторного поиска прямо внутри своего вездесущего объектного хранилища. Заявлено, что это может снизить затраты на хранение и обработку векторов до 90%.
По сути, AWS предлагает не отдельный сервис, а новый тип бакета
vector bucket. Внутри него вы создаете векторные индексы, указывая размерность векторов и метрику расстояния (косинусную или евклидову).Вы просто загружаете в индекс свои эмбеддинги вместе с метаданными для фильтрации, а S3 берет на себя всю грязную работу по хранению, автоматической оптимизации и обеспечению субсекундного ответа на запросы. Никакого управления инфраструктурой.
Один бакет может содержать до 10 тысяч индексов, а каждый индекс, в свою очередь, десятки миллионов векторов.
S3 Vectors бесшовно интегрируется с Bedrock Knowledge Bases. Теперь при создании базы знаний для RAG-приложения можно просто указать S3-бакет в качестве векторного хранилища.
Процесс создания RAG-пайплайна для тех, кто уже живет в облаке AWS, упрощается до нескольких кликов. То же самое касается и SageMaker Unified Studio, где эта интеграция тоже доступна из коробки.
AWS предлагает гибкую, многоуровневую стратегию. Нечасто используемые или «холодные» векторы можно экономично хранить в S3 Vectors. А когда для части данных потребуется максимальная производительность и низкая задержка в реальном времени, например, для системы рекомендаций, их можно быстро экспортировать в OpenSearch.
Это очень прагматичный инженерный подход, позволяющий балансировать между стоимостью и производительностью.
Пока сервис находится в статусе превью и доступен в регионах US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Frankfurt), and Asia Pacific (Sydney) Regions.
Попробовать S3 Vectors можно в Amazon S3 console.
@ai_machinelearning_big_data
#AI #ML #RAG #Amazon
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤5🔥4
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
🟡 Через чат: ttps://chat.qwen.ai/)
🟡 GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤2🔥2
Forwarded from Machinelearning
Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.
Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.
Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.
Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.
Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.
Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.
Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.
Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.
Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.
В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
@ai_machinelearning_big_data
#AI #ML #Sorting #Graphs #Algorithm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥5❤2😐2
Forwarded from Machinelearning
Главный вывод из пятого ежегодного списка Top 100 AI Apps — экосистема ИИ начинает приходить в равновесие.
В веб-рейтинге появилось всего 11 новых имен, что заметно меньше, чем было мартовском отчете. В мобильном сегменте, напротив, новичков больше — целых 14, но это связано с тем, что App Store активно вычищают "клонов ChatGPT", освобождая место для оригинальных приложений.
Их флагманский ассистент Gemini занял 2 место после ChatGPT и в вебе, и на мобильных устройствах. Правда, разрыв пока существенный: в вебе Gemini набирает примерно 12% от трафика ChatGPT. А вот на мобильных платформах ситуация иная - у Gemini уже почти половина ежемесячно активных пользователей ChatGPT.
Интересная деталь: почти 90% мобильной аудитории Gemini сидит на Android, тогда как у ChatGPT доля Android-пользователей составляет 60%.
Помимо Gemini, в топ-10 ворвался Google AI Studio. Следом идeт NotebookLM на 13-м месте, а экспериментальная площадка Google Labs заняла 39-ю строчку, получив в мае 2025 года прирост трафика более чем на 13% после запуска видеомодели Veo 3.
Grok занял четвeртое место в вебе и 23-е на мобильных. Его мобильный рост особенно впечатляет: с нуля в конце 2024 года до более чем 20 миллионов MAU сейчас. В июле 2025 года, после релиза модели Grok 4, использование приложения подскочило почти на 40%.
У Марка Цукербкрга успехи скромнее: 46-е место в вебе и полное отсутствие в мобильном топе.
Perplexity продолжает уверенно расти, а вот Claude и DeepSeek показывают смешанные результаты. DeepSeek особенно сильно просел в вебе, потеряв более 40% трафика со своего пика в феврале 2025 года.
Сразу 3 компании, ориентированные на внутренний рынок, вошли в топ-20 веб-рейтинга: Quark от Alibaba (№9), Doubao от Bytedance (№12) и Kimi от Moonshot AI (№17). Более 75% их трафика приходится на Китай, где доступ к ChatGPT или Claude ограничен.
Ещё более поразительна картина на мобильных устройствах. По оценкам, 22 из 50 приложений в топе были разработаны в Китае, но используются преимущественно за его пределами. Особенно сильна их концентрация в категории "фото и видео": одна только компания Meitu представлена 5-ю продуктами, включая BeautyPlus и Wink. Bytedance также не отстаёт с ассистентами Doubao и Cici.
Это ChatGPT, Civitai, Poe, Perplexity, LeonardoAI, VEED, Gamma, QuiliBot, CutOut, Character AI, Midjourney, Photoroom, Eleven Labs и HuggingFace.
Из этой "звёздной" команды только 5 компаний разрабатывают собственные модели, 7 используют сторонние API или опенсорс-решения, а 2 являются агрегаторами моделей.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3❤2