Artificial Intelligence
16.5K subscribers
1.11K photos
11 videos
1 file
1.97K links
Artificial Intelligence

admin - @haarrp

@itchannels_telegram - 🔥 best it channels

@ai_machinelearning_big_data - Machine learning channel

@pythonl - Our Python channel

@pythonlbooks- python книги📚

@datascienceiot - ml 📚

РКН: clck.ru/3FmwZw
Download Telegram
🚀 Инференс языковых моделей на Go с yzma

yzma позволяет использовать языковые модели, включая VLM и LLM, на вашем оборудовании с полной аппаратной поддержкой. Работает на Linux, macOS и Windows без необходимости в CGo, что упрощает интеграцию.

🚀Основные моменты:
- Поддержка VLM, LLM, SLM и TLM.
- Полная аппаратная активация для оптимальной производительности.
- Простота использования без C компилятора.
- Совместимость с последними версиями llama.cpp.
- Примеры использования для различных моделей.

📌 GitHub: https://github.com/hybridgroup/yzma

#go
👍1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🚀 Emu3.5 - новая масштабная мультимодальная world-модель

Это World-модель, работающая сразу с двумя потоками - текстом и пикселями и предсказывающая их совместное состояние на каждом шаге.

- 🔥 Обучена на 10T+ чередующихся vision-language токенов и доведена RL - в результате модель демонстрирует сильное мультимодальное рассуждение и генерация
- Новый подход DiDA (Discrete Diffusion Adaptation) —- Discrete Diffusion Adaptation переводит последовательное декодирование в параллельное двустороннее «денойзинг»-предсказание в дискретном пространстве токенов - в итоге это дает примерно 20× быстрее инференс без потери качества.

По метрикам модель превосходит Nano Banana в генерации, редактировании и интерливинговых задачах.

🟠Попробовать: Emu3.5: https://emu.world
🟠Github: https://github.com/baaivision/Emu3.5

@ai_machinelearning_big_data


#Emu3 #MultimodalAI #WorldModel #NextTokenPrediction
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Lumine: An Open Recipe for Building Generalist Agents in 3D Open Worlds

HF: https://huggingface.co/papers/2511.08892

Peoject: https://www.lumine-ai.org/

Paper: https://arxiv.org/abs/2511.08892
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🔥 Подборка полезных ресурсов для программистов.

Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://xn--r1a.website/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://xn--r1a.website/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://xn--r1a.website/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://xn--r1a.website/addlist/w4Doot-XBG4xNzYy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://xn--r1a.website/addlist/BkskQciUW_FhNjEy

Сохрани себе, чтобы не потерять!
👍1
💡 UniVA: Universal Video Agent towards Open-Source Next-Generation Video Generalist

Hf: https://huggingface.co/papers/2511.08521

Paper: https://arxiv.org/pdf/2511.08521

Github: https://github.com/univa-agent/univa
👍32
ML полностью изменил рекламные алгоритмы

Вышел большой разбор от Ивана Ремень (AI VK) о том, как современные рекламные платформы работают под капотом.
Что внутри:

— Аукцион, обрабатывающий миллионы запросов в секунду
— ML-модели, которые прогнозируют бюджет и эффективность
— Anti-fraud ML, выявляющий ботов по паттернам поведения
— Сквозная ML-инфраструктура на единой Discovery-платформе

Отличный материал, чтобы понять, как индустрия движется к ML управлению рекламой.
4👍3👎1🔥1🥰1🤬1
Forwarded from Machinelearning
🚀 Релиз DeepSeek-V3.2 и DeepSeek-V3.2-Speciale - модели нового поколения, созданные в первую очередь для reasoning и работы в агентных системах.

Что нового:
- DeepSeek-V3.2 - официальный преемник V3.2-Exp. Доступна в приложении, на сайте и через API.
- DeepSeek-V3.2-Speciale - улучшенная версия с акцентом на продвинутое многошаговое рассуждение. Пока что работает только через API.

Обе модели делают упор на глубокие цепочки рассуждений и поведение, нацеленное на агентные сценарии: планирование, решение задач, сложные выводы и работу со структурированными данными.

🏆 Производительность

• V3.2 - баланс скорости и качества, уровень примерно GPT-5
• V3.2-Speciale - топовый reasoning, конкурирует с Gemini-3.0-Pro.
• Speciale - лидер на IMO, CMO, ICPC.

🤖 Новый подход к обучению агентов

• Синтезированы большие тренировочные данные для 1800+ сред и 85k сложных инструкций.
• V3.2 - первая модель DeepSeek, у которой мышление встроено прямо в tool-use.

💻 API

• V3.2 использует тот же интерфейс, что V3.2-Exp.
• Speciale доступна через временный endpoint, работать будет до 15 декабря 2025.

📦 DeepSeek-V3.2 Model: https://huggingface.co/deepseek-ai/DeepSeek-V3.2
📦 DeepSeek-V3.2-Speciale Model: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Speciale
📄 Tech report: https://huggingface.co/deepseek-ai/DeepSeek-V3.2/resolve/main/assets/paper.pdf

@ai_machinelearning_big_data

#deepseek, #deepseekv3, #ai, #нейросети, #искусственныйинтеллект, #llm
2👍2🔥2
🔥 На stepik вышел курс, который учит Создавать настоящие AI-сервисы, а не просто запускать скрипты?

Этот практический курс по Python и FastAPI покажет, как собрать полноценное приложение с ИИ, базой данных, автогенерацией контента и Telegram-ботом.

Ты пройдёшь путь от первого HTTP-запроса до рабочего сервиса, который сам генерирует текст через ИИ, сохраняет данные, отправляет результаты по расписанию и отвечает пользователям.

Никакой теории ради теории - только практические шаги, из которых рождается реальный продукт.

🎁 48 часов действует скидка в 40% процентов

👉 Начать учиться на Stepik
👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Темпы развития ИИ удвоились, но доверие к бенчмаркам падает: отчет Epoch AI

В обзоре за 2025 год Epoch AI зафиксировала резкое ускорение прогресса развития ИИ. По данным аналитиков, индустрия прошла «переломную точку»: скорость улучшения показателей SOTA-моделей выросла почти в 2 раза — с 8 до 15 пунктов индекса производительности за год. Драйверами роста называют массовый переход к ризонинг-моделям и фокус на RL.

Однако, отчет указывает на серьезную проблему: результаты тестов становятся всё менее репрезентативными. Даже при использовании одинаковых бенчмарков прямое сравнение моделей затруднено из-за различий в промптах, параметрах сэмплирования и программных обвязках. Последние особенно сильно искажают оценку ИИ-агентов, а нестабильность API провайдеров добавляет шум в данные, делая метрики новых моделей уязвимыми для ошибок измерения.
epoch.ai

✔️ Salesforce теряет доверие к большим языковым моделям.

В компании заметили, что первоначальный энтузиазм сменился более прагматичным взглядом. LLM оказываются ненадежными для бизнес-задач. Год назад оптимизма было больше, но теперь разработчики возвращаются к проверенной автоматизации на основе правил.

Основная причина — непредсказуемость ИИ. Модели часто «дрейфуют», теряя контекст разговора или игнорируют инструкции.

Чтобы сделать корпоративный софт предсказуемым, Salesforce переходит на жесткие ограничения. Вместо креатива нейросети теперь будет работать строгая логика выполнения сценариев.
theinformation.com

✔️ Китай требует от Apple Intelligence отклонять 95% провокационных запросов.

Для легального запуска Apple Intelligence в КНР компании придется доказать соответствие своих алгоритмов жестким стандартам местной цензуры. Поскольку иностранные LLM в стране заблокированы, Apple вынуждена использовать локальное решение — модель Qwen3 от Alibaba, которая сейчас проходит государственную аттестацию.

Регламент проверки серьезный: регуляторы используют пул из 2 тыс. специально подобранных вопросов, касающихся политики и других чувствительных тем. Чтобы получить разрешение на релиз, нейросеть обязана отказаться отвечать минимум на 95% таких промптов.

Процедура настолько сложна, что на китайском рынке сформировалась ниша консалтинговых агентств, которые помогают техно-гигантам настраивать фильтры моделей именно под этот тест.
9to5mac.com

✔️ Microsoft опровергла слухи о переписывании Windows на Rust с помощью ИИ.

Компания заявила, что не планирует переписывать ядро операционной системы с использованием генеративных моделей. Поводом для спекуляций стал вирусный пост ведущего инженера Microsoft Галена Ханта в LinkedIn, где онописал цель — полностью избавиться от C/C++ к 2030 году и достичь производительности «один инженер, один месяц, миллион строк кода» за счет автоматизации.

IT-сообщество интерпретировало это как анонс глобального рефакторинга Windows 11. В ответ Microsoft пояснила, что описанный сценарий относится лишь к исследовательским проектам по миграции легаси-кода, а не к продуктовой стратегии ОС. Хант также внес правки в публикацию, снизив градус категоричности.
windowslatest.com

✔️ xAI запустила Grok Collections API.

xAI представила инструмент для разработчиков, который упрощает создание RAG-приложений - Grok Collections API. Он берет на себя задачи по хранению, индексации и семантическому поиску по документам, избавляя инженеров от необходимости строить векторные баз данных.

Решение использует технологию layout-aware parsing с использованием OCR и может сохранять структуру исходников: таблицы, макеты PDF и синтаксис кода остаются читаемыми для модели.

По внутренним бенчмаркам xAI, в задачах на точность извлечения данных новый сервис превосходит показатели Gemini 3 Pro и GPT-5.1. Стоимость - $2.50 за 1000 поисковых запросов и, по словам xAI, загруженные в Collections файлы не используются для дообучения базовых моделей без явного согласия.
x.ai


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41
✔️ Hugging Face запустила функцию «чата со статьями» для анализа публикаций.

Платформа интегрировала умного ассистента в раздел Hugging Face Papers. Теперь при просмотре любой научной работы доступен встроенный интерфейс на базе HuggingChat и собственного MCP-сервера.

Новый инструмент ускоряет процесс погружения в сложные исследования. Вместо полного чтения PDF можно попросить сделать саммари, объяснить ключевые концепции или найти конкретные данные внутри текста в режиме диалога.

Функция работает автоматически для всех ссылок на arXiv, размещенных на хабе.

huggingface.co
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍1
MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling

Hf: https://huggingface.co/papers/2511.11793

Paper: https://arxiv.org/abs/2511.11793

Github: https://github.com/MiroMindAI/MiroThinker
👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI поглотила команду стартапа Convogo.

OpenAI начала год с приобретения: к компании присоединяется команда Convogo, платформы для автоматизации работы HR-специалистов и бизнес-коучей. Представители техгиганта подтвердили, что речь идет именно о трансфере талантов, а не о покупке технологий или интеллектуальной собственности.

Для OpenAI это уже 9-е приобретение за последний год. В прощальном письме команда Convogo отметила, что их главная экспертиза заключается в создании прикладных инструментов, которые превращают возможности нейросетей в реальные рабочие процессы — именно этим они и продолжат заниматься на новом месте.

Финансовые условия сделки не разглашаются, однако известно, что она была полностью оплачена акциями. Сам сервис Convogo будет закрыт.
finance.yahoo.com

✔️ Microsoft запустила Copilot Checkout.

Copilot Checkout - это реализация концепции агентной коммерции: полный цикл покупок от поиска и сравнения товаров до финальной оплаты не покидая окно чата и не переходя на внешние сайты магазинов.

Процессинг обеспечивают PayPal, Stripe и Shopify. Для последнего запущено агрессивное развертывание: продавцы подключаются к системе автоматически (с возможностью отказа), тогда как остальные могут интегрироваться через специальный Agentic Commerce Protocol.

Microsoft утверждает, что Copilot Checkout кардинально меняет воронку продаж, повышая конверсию целевых запросов на 194% по сравнению с классическим веб-серфингом.
microsoft.com

✔️ Акции MiniMax взлетели на 109% после дебюта на Гонконгской бирже.

Котировки ИИ-стартапа удвоились в первый день торгов на Гонконгской фондовой бирже, закрывшись на отметке 345 гонконгских долларов. В ходе IPO компания привлекла около $620 млн, значительно опередив локального соперника Zhipu AI (создателя моделей GLM), чьи акции в ходе первичного размещения днем ранее выросли лишь на 13%.

Китайские разработчики сумели опередить американских коллег, первыми выйдя на публичный рынок. Привлеченные средства пойдут на R&D, поскольку коммерциализация продуктов, по словам руководства MiniMax, всё ещё находится на ранней стадии.
cnbc.com

✔️ Глобальные вычислительные мощности ИИ превысили 15 млн. условных H100.

Epoch AI опубликовала базу данных по рынку чипов, согласно которой мировой парк ускорителей достиг производительности, эквивалентной 15 млн. Nvidia H100. В отчете зафиксирована смена поколений железа: основным драйвером выручки Nvidia стал новый чип B300, тогда как доля бывшего флагмана H100 упала ниже 10%.

Совокупное энергопотребление всего этого оборудования оценивается более чем в 10 ГВт. Для сравнения, это вдвое превышает потребности всего Нью-Йорка.

Авторы проекта собирали статистику по финансовым отчетам и оценкам аналитиков, чтобы добавить прозрачности индустрии, где вендоры редко раскрывают точные цифры продаж в штуках.
epoch.ai

✔️ Grok ограничил генерацию изображений для бесплатных аккаунтов.

Платформа отключила функцию создания картинок в Grok для большинства пользователей X после волны критики, связанной с массовой генерацией откровенного контента. Этот шаг стал вынужденной реакцией на давление регуляторов, включая прямые угрозы штрафов и возможной блокировки соцсети X в Великобритании.

Теперь инструменты генерации и редактирования доступны исключительно платным подписчикам. Расчет строится на деанонимизации: платформа хранит платежные данные премиум-клиентов, что упрощает идентификацию тех, кто создает запрещенный контент.
theguardian.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🔥 Идея из paper: перестать “тренировать наугад” - и сначала предсказывать, какой код выиграет

Обычно ML-агенты работают так:
написал код -> запустил обучение -> посмотрел результат -> исправил -> снова запустил…

Проблема в том, что каждая попытка может занимать часы, и получается дорогой trial-and-error.

Авторы предлагают другой подход:

вместо того чтобы проверять все варианты
агент сначала рассуждением выбирает, какой из 2 решений лучше,
и запускает обучение только для лучшего кандидата.

То есть:
сначала прогноз -> потом одна проверка, а не десятки запусков.

Они оформляют это как задачу:
“выбор лучшего решения по данным” (data-centric preference)

На вход дают:
- описание задачи
- *подтверждённый отчёт о датасете* (data report)
- два варианта кода

Чтобы отчёту можно было доверять, они:
1) прогоняют отдельный профайлинг-скрипт по данным
2) проверяют логи
3) переписывают статистику в простой текст, понятный LLM

Результат на реальных данных:
- 18,438 пар решений
- 26 задач
- точность лучшей модели: 61.5%
- и ещё важно: уверенность модели реально совпадает с тем, права она или нет

В их системе FOREAGENT это даёт:
поиск в 6 раз быстрее
📈 примерно на 6% лучше качество

Вывод простой:
мы можем ускорить обучение агентов не за счёт железа,
а за счёт “умного отбора” - тренировать только то, что с высокой вероятностью сработает.

Paper: arxiv.org/abs/2601.05930
👍21👏1
Senior AI Engineer во Fluently (YC W24)

📍Remote
💵 Оплата в USD
🚀Фаундер — Юрий Ребрик, ex Amazon, Google, NVIDIA

Fluently — AI-тьютор, который помогает улучшать разговорный английский язык людям по всему миру, строящим карьеру в зарубежных компаниях. Стартап прошел в YCombinator в 2024 году, за последние 8 месяцев выросли со $100k до $6M ARR.

Размер команды – 20 | Инвестиции – $2.5M

Над чем предстоит работать

- Развивать голосового AI-агента: LiveKit/WebRTC, streaming ASR/TTS, RAG, function-calling, написание промптов и тд.
- Тренировать и деплоить ML модели в прод: ASR/LLM/TTS/voice-related.
- Обеспечивать надёжность и observability в проде: алерты, трейсинг, оптимизация латенси, быстрый фикс проблем.

Must-haves

- Опыт самостоятельной тренировки и деплоя ML моделей.
- Умение много работать и делать быстро.

Nice to have

- Опыт создания ai voice agents.
- Contribution to open source github repos.
- Kaggle, Codeforces, олимпиады, etc.

The deal

- Конкурентная зарплата в USD + опционы.
- Remote-first: работа из любой точки мира через Deel.
- Поездка в США на месяц для совместной работы и командные оффсайты.

Узнать подробнее и откликнуться тут, почитать блог фаундера можно здесь.
🔥2
🚨 Похоже найдены следы DeepSeek V4?.

В репозитории/ветках заметили MODEL1 - и самое интересное, что он выглядит как отдельная независимая ветка, параллельная V3.2.

То есть это не “патч” внутри линейки V3,
а похоже на:

новый модельный ряд
с другими архитектурными параметрами
потенциально flagship-апдейт

Если следовать неймингу DeepSeek:
после V3.2 крупный архитектурный скачок логично назывался бы V4.

Пока без официального подтверждения, но сигнал жирный:
если MODEL1 действительно новая архитектура, нас ждёт большой релиз.

https://x.com/nopainkiller/status/2013522059662614653
3👍3