NeurIPS 2025 в Мехико идёт полным ходом
Конференция продолжается, а наш коллега Владислав Фахретдинов делится заметками о воркшопе второго дня — 7th International Workshop on Large Scale Holistic Video Understanding: Toward Video Foundation Models.
#YaNeurIPS25
CV Time
Конференция продолжается, а наш коллега Владислав Фахретдинов делится заметками о воркшопе второго дня — 7th International Workshop on Large Scale Holistic Video Understanding: Toward Video Foundation Models.
Было немного спикеров, но почти каждый привёз по две-три статьи или исследования, поэтому день получился насыщенным. Основной мотив воркшопа — большинство моделей для работы с видео недостаточно хорошо ориентируются «во времени». Участники разбирались, что с этим можно сделать.
Первым выступил профессор университета Амстердама. Он заметил, что многие VideoLLM не справляются даже с простым синтетическим бенчмарком: какой из двух объектов в видео появляется раньше. Это показывает, что мы до конца не понимаем, как правильно оценивать такие способности модели.
Затем последовал рассказ о работе Bench of Time с более подробными исследованиями — оказалось, что большинство примеров в популярном бенчмарке (MVBench) решается либо знанием всего об одном кадре, либо вообще исключительно по тексту. Чтобы исправить эту ситуацию, авторы сделали свой бенчмарк TVBench. В нём все вопросы были сформулированы так, что без понимания объектов и процессов в кадре нельзя дать правильный ответ.
Сравнение моделей на новом бенчмарке показало, что большинство языковых, картиночных и даже видеомоделей выдают результаты немногим лучше случайного предсказания. При этом все же нашлись несколько моделей, которые были достаточно хороши на обоих бенчмарках, например Gemini-1.5.
Следом было выступление о генерации 3D-представления из изображения. По сути, это продолжение работы DUSt3R, в которой научились по любым входным изображениям без параметров камер и поз делать матчинг и генерировать плотное облако точек 3D-представления сцены.
Авторы сделали уточнение, что матчинг изображений по случайному видео с движением — вычислительно сложная задача. Поэтому они собрали датасет 360-1M, где происходит движение и вращение вокруг оси, из-за чего матчить изображения стало гораздо проще. На основе своего датасета они обучили генеративную модель ODIN, которая по изображению и смещению позиции камеры генерирует новое изображение. Подробностей было мало, никаких сравнений с DUSt3R или NeRF не показали, но зато рассказали, что модель хорошо обобщается вне домена — например, на картины.
Самый интересный доклад за день — о том, что визуальные модели знают о нашем мире. Авторы выделили и проверили три свойства: базовое представление о физическом устройстве мира, визуальное предсказание, а также обобщение — понимание аналогий.
Для первого свойства взяли часовые видео с прогулками по городам и с помощью сервиса визуальной локализации, а также небольшого объёма человеческой проверки, разметили эти видео. В частности, для каждого видео сгенерировали маршрут на карте.
Далее видео нарезали и собрали бенчмарк, в котором модели задавали вопросы по содержанию ролика, например: о евклидовом расстоянии от начальной до конечной точки на полученном маршруте; направлении; зацикленность маршрута; выборе правильного трека на карте среди нескольких вариантов (с текстом на карте и без текста); распознавании окружающей архитектуры. По всем этим вопросам модели уступают человеку — за исключением проверки на зацикленность маршрута.
Авторы также показали, что на самом деле модели не понимали, был цикл в маршруте или нет. Вместо этого они просто смотрели на разметку на карте и сопоставляли её с текстовыми названиями улиц, которые видны в видео.
Напоследок был доклад из трёх частей, из которых я бы выделил как самую интересную — SSL-обучение мультимодальной модели видео+аудио CAV-MAE Sync. Из того, что мне кажется важным: авторы совместно используют аудио- и видеопатчи и добавляют регистровый токен, чтобы переносить накопленную информацию в следующие слои. Больше всего мне понравилось, что новая модель позволяет локализовать на видео источники звука.
#YaNeurIPS25
CV Time
🔥12❤9👍6
NeurIPS в Мехико: туториал о геопространственных foundation-моделях
В третий день конференции прошло большое количество туториалов. Один из них — Geospatial Foundation Models: Overview, Application and Benchmarking — посетил Владислав Фахретдинов из команды восприятия робота доставки. Делимся его заметками!
#YaNeurIPS25
CV Time
В третий день конференции прошло большое количество туториалов. Один из них — Geospatial Foundation Models: Overview, Application and Benchmarking — посетил Владислав Фахретдинов из команды восприятия робота доставки. Делимся его заметками!
Выступали докладчики из бразильского подразделения IBM Research. Начали с рассказа о задаче remote sensing — дистанционного зондирования по спутниковым данным. Основное отличие от классических задач компьютерного зрения в том, что кроме RGB-сигналов необходимо использовать и другие спектральные каналы, у каждого из которых есть своё физическое назначение.
На основе этих данных можно решать множество задач, таких как сегментация земного покрова, пожарных шрамов и наводнений, предсказание глубины для водного покрова и процента покрытия деревьями.
Затем был базовый экскурс в развитие компьютерного зрения: от свёрточных моделей и трансформеров до автоэнкодеров, а после — рассказ о foundation-моделях в этой сфере.
Докладчики представили множество работ, в которых главный архитектурный вопрос состоит в том, как правильно объединять данные из разных каналов (модальностей). Отчасти это связано с тем, что нельзя просто склеить все каналы из-за отличий в разрешении, поэтому используются разные подходы:
— отдельные энкодер и декодер для каждой модальности, но общий аттеншн;
— динамический подбор размеров патчей для каждой модальности на основе длины волны и общий энкодер;
— либо разные энкодеры, но совместный семплинг патчей со всех модальностей на этапе претрейна.
После этого исследователи рассказали о своём фреймворке для обучения геопространственных моделей TerraTorch. На практике — собрали ноутбук с обучением двум разным задачам: land segmentation и burn scars.
Также авторы представили свой новый бенчмарк GeoBenchV2, который сгруппировали из 19 существующих датасетов. Взяли множество популярных в CV моделей для сравнения и дофайнтюнили их на разные задачи только на основе RGB.
В итоге оказалось, что общие модели, такие как DinoV3, дают гораздо лучшие предсказания на основе RGB-изображений, но на задачах с мультиспектральными данными более маленькие, но узкоспециализированные модели всё ещё побеждают.
#YaNeurIPS25
CV Time
❤10👍9🔥7❤🔥1
NeurIPS в Мехико: продолжаем делиться интересным
Червёртый день конференции в Мексике получился насыщенным. Было выступление Ричарда Саттона о его видении SuperIntelligence, две сессии со статьями и две — с постерами.
Самая интересная статья дня, по мнению Владислава Фахретдинова, — Perception Encoder: The best visual embeddings are not at the output of the network от Meta*. Мы уже разбирали работу в канале, а теперь делимся тем, что о ней говорят сами авторы.
#YaNeurIPS25
CV Time
___
Meta признана экстремистской организацией, а Facebook и Instagram запрещены на территории РФ
Червёртый день конференции в Мексике получился насыщенным. Было выступление Ричарда Саттона о его видении SuperIntelligence, две сессии со статьями и две — с постерами.
Самая интересная статья дня, по мнению Владислава Фахретдинова, — Perception Encoder: The best visual embeddings are not at the output of the network от Meta*. Мы уже разбирали работу в канале, а теперь делимся тем, что о ней говорят сами авторы.
Исследователи рассказывают, что поставили перед собой цель создать лучший визуальный энкодер для многих downstream-задач. Для этого двухстадийно обучались контрастив-лоссом на парах «изображение-текст» и потом — на парах «видео–текст», используя свою модель как кадровый энкодер.
Начав с CLIP-бейзлайна, добавили ряд улучшений и сравнили их по качеству и устойчивости. Уже на этом этапе модель достигла SOTA в zero-shot retrieval и классификации; назвали её PE_core.
Затем авторы протестировали модель как энкодер на разных downstream-задачах: детекции, трекинге, предсказании глубин. Увидели, что перфоманс оказался ниже ожидаемого.
В ходе исследования с помощью аттеншен-карт заметили появление глобальных токенов на определённом слое. Чтобы проверить гипотезу, стали брать эмбеддинги не с последнего слоя, а с предыдущих. Построив график качества по слоям для разных downstream-задач и моделей, увидели, что качество растёт к эмбеддингам средних слоёв, а к последним слоям — резко падает.
Для решения этой проблемы использовали два метода после обучения:
1. Чтобы сохранить глобальную информацию, провели файнтьюн на 41-м слое (который показывает близкие к лучшим значениям по всем задачам) с минимизацией косинусного расстояния между ним и последним слоем.
2. Чтобы сохранить локальную информацию, добавили файнтьюн на MSE попарного косинусного расстояния между эмбеддингами последнего слоя (H×W×1024 -> HW×HW) и попарного косинусного расстояния между логитами SAM для 1024 точек из равномерной сетки исходного изображения.
Эту модель авторы назвали PE_spatial и показали, что она достигает SOTA по многим downstream-задачам. Хотя вышедший позже DinoV3 достиг более высоких результатов, подход остаётся интересным.
#YaNeurIPS25
CV Time
___
Meta признана экстремистской организацией, а Facebook и Instagram запрещены на территории РФ
🔥12❤9👍4❤🔥2
InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning and Efficiency
Авторы опенсорс-семейства InternVL постоянно выпускают всё новые и новые улучшения своих мультимодальных моделей, которые опережают SoTA-результаты в первую очередь по бенчмаркам. Сегодня разберём статью о свежей версии InternVL3.5.
В основе улучшений — три основных нововведения.
Cascade Reinforcement Learning
Раньше модели InternVL использовали MPO в качестве offline RL. В новой версии 3.5 авторы добавили ещё и online RL: принято считать, что на LLM/VLM он гораздо лучше, чем offline. Но offline RL значительно легче по вычислениям (в основном из-за того, что во время обучения не нужно генерировать ответы на инструкции).
Авторы показали, что offline RL не так уж сильно отстаёт от online RL, но при этом обучается в 20 раз быстрее. А лучшее качество модели достигается при совместном каскадном обучении: результаты лучше, чем у online RL, даже на двух эпохах. Так offline RL превратился в warmup для online RL.
В качестве online RL используется GSPO — модификация GRPO, которая решает проблему нестабильности обучения и «коллапса модели», особенно при тренировке Mixture-of-Experts-моделей. GRPO работает на уровне отдельных токенов, создавая шумные градиенты, а GSPO применяет оптимизацию на уровне всей последовательности целиком, что важно для длинных цепочек рассуждений.
Visual Resolution Router (ViR)
Основная цель этого нововведения — снизить вычислительную нагрузку на модель во время инференса. Этого удалось добиться за счёт уменьшения количества визуальных токенов в представлении каждого кропа картинки. Сколько токенов нужно выделить на кроп, решает роутер. Среднее количество визуальных токенов, поступающих в LLM, при таком подходе сокращается на 50%.
Стандартный процесс кодирования картинки выглядит так:
— изображение делится на кропы,
— каждый патч преобразуется в 1024 токена для ViT,
— после обработки ViT количество токенов уменьшается адаптером до 256 и передаются в LLM.
Роутер может направить токены в более агрессивный адаптер и сжать до 64 токенов. Обучение происходит в два этапа. На первом этапе модель тренируется решать задачу с меньшим количеством токенов за счёт минимизации KL-дивергенции между распределениями выходных данных изначального сжатия и более агрессивного сжатия.
Цель второго этапа — научить сам роутер ViR принимать правильные решения о степени сжатия для каждого кропа. ViR обучается как стандартный бинарный классификатор, где label кропа определяется по значению loss из первого этапа.
Итог — flash-модель практически без потери качества с ускорением до 4 раз (точная цифра зависит от разрешения картинки и размера модели).
DvD (Decoupled Vision-Language Deployment)
В этой системе модель для обработки изображений (ViT) и языковая модель (LLM) разворачиваются на отдельных серверах или GPU.
Они работают не последовательно (сначала картинка, потом текст), а параллельно. Пока языковая модель генерирует ответ на предыдущий запрос, визуальный энкодер уже обрабатывает следующее изображение. Это даёт ускорение до 2 раз для базовых моделей, а в комбинации с ViR — до 4 раз на высоких разрешениях.
По словам авторов, новая InternVL3.5 рассуждает на +16,0% эффективнее и в 4,05 раз быстрее, чем её предшественники.
Разбор подготовил❣ Антон Астахов
CV Time
Авторы опенсорс-семейства InternVL постоянно выпускают всё новые и новые улучшения своих мультимодальных моделей, которые опережают SoTA-результаты в первую очередь по бенчмаркам. Сегодня разберём статью о свежей версии InternVL3.5.
В основе улучшений — три основных нововведения.
Cascade Reinforcement Learning
Раньше модели InternVL использовали MPO в качестве offline RL. В новой версии 3.5 авторы добавили ещё и online RL: принято считать, что на LLM/VLM он гораздо лучше, чем offline. Но offline RL значительно легче по вычислениям (в основном из-за того, что во время обучения не нужно генерировать ответы на инструкции).
Авторы показали, что offline RL не так уж сильно отстаёт от online RL, но при этом обучается в 20 раз быстрее. А лучшее качество модели достигается при совместном каскадном обучении: результаты лучше, чем у online RL, даже на двух эпохах. Так offline RL превратился в warmup для online RL.
В качестве online RL используется GSPO — модификация GRPO, которая решает проблему нестабильности обучения и «коллапса модели», особенно при тренировке Mixture-of-Experts-моделей. GRPO работает на уровне отдельных токенов, создавая шумные градиенты, а GSPO применяет оптимизацию на уровне всей последовательности целиком, что важно для длинных цепочек рассуждений.
Visual Resolution Router (ViR)
Основная цель этого нововведения — снизить вычислительную нагрузку на модель во время инференса. Этого удалось добиться за счёт уменьшения количества визуальных токенов в представлении каждого кропа картинки. Сколько токенов нужно выделить на кроп, решает роутер. Среднее количество визуальных токенов, поступающих в LLM, при таком подходе сокращается на 50%.
Стандартный процесс кодирования картинки выглядит так:
— изображение делится на кропы,
— каждый патч преобразуется в 1024 токена для ViT,
— после обработки ViT количество токенов уменьшается адаптером до 256 и передаются в LLM.
Роутер может направить токены в более агрессивный адаптер и сжать до 64 токенов. Обучение происходит в два этапа. На первом этапе модель тренируется решать задачу с меньшим количеством токенов за счёт минимизации KL-дивергенции между распределениями выходных данных изначального сжатия и более агрессивного сжатия.
Цель второго этапа — научить сам роутер ViR принимать правильные решения о степени сжатия для каждого кропа. ViR обучается как стандартный бинарный классификатор, где label кропа определяется по значению loss из первого этапа.
Итог — flash-модель практически без потери качества с ускорением до 4 раз (точная цифра зависит от разрешения картинки и размера модели).
DvD (Decoupled Vision-Language Deployment)
В этой системе модель для обработки изображений (ViT) и языковая модель (LLM) разворачиваются на отдельных серверах или GPU.
Они работают не последовательно (сначала картинка, потом текст), а параллельно. Пока языковая модель генерирует ответ на предыдущий запрос, визуальный энкодер уже обрабатывает следующее изображение. Это даёт ускорение до 2 раз для базовых моделей, а в комбинации с ViR — до 4 раз на высоких разрешениях.
По словам авторов, новая InternVL3.5 рассуждает на +16,0% эффективнее и в 4,05 раз быстрее, чем её предшественники.
Разбор подготовил
CV Time
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥8❤6