Как известно, важнейшую роль в формировании долговременной памяти играют нейроны гиппокампа. Считается, что ключевым механизмом, лежащим в планировании действий и консолидации памяти, являются так называемые остроконечные пульсирующие волны в электрической активности нейронов гиппокампа. Более того, как сообщается в недавнем исследовании, особенно важна длительность этих волн.
Авторы исследования изучали работу памяти на примере крыс и классических поведенческих тестов по прохождению лабиринтов. Оказалось, что в тех случаях, когда крысы оказывались в ситуациях, требующих активной работы памяти – например, когда крыса попадает в новый лабиринт, и у неё начинает формироваться новая поведенческая стратегия с привлечением прошлого опыта – частота длинных волн (длительностью более 100 миллисекунд) повышалась.
Учёные посмотрели на проблему и с другой стороны: будет ли искусственное повышение доли длинных пульсирующих волн в гиппокампе активировать память? Для запуска длинных волн в строго определённом типе клеток гиппокампа (а именно, в предполагаемых пирамидальных нейронах) были использованы оптогенетические подходы вместе со сложными тестами по прохождению лабиринтов, которые повторяли через 10 дней с теми же животными. Лабиринты, по которым перемещались крысы, требовали от животных не только выработки чёткой программы действий, но и её запоминания, чтобы успешно проходить те же лабиринты спустя некоторое время.
Исследователи смогли показать, что направленное увеличение длительности пульсирующих волн в гиппокампе положительно влияло на память животных.
Примечательно, что оптогенетическая стимуляция приводила не к тому, что доля длинных волн постоянно повышалась в одних и тех же клетках, но к тому, что в длинные волны начинали преобладать во всё большем числе пирамидальных нейронов гиппокампа, так что в процесс запоминания последовательности действий вовлекалось всё большее количество клеток. Таким образом, в основе работы памяти важнейшую роль играет определённая электрическая активность клеток гиппокампа.
#наука
Авторы исследования изучали работу памяти на примере крыс и классических поведенческих тестов по прохождению лабиринтов. Оказалось, что в тех случаях, когда крысы оказывались в ситуациях, требующих активной работы памяти – например, когда крыса попадает в новый лабиринт, и у неё начинает формироваться новая поведенческая стратегия с привлечением прошлого опыта – частота длинных волн (длительностью более 100 миллисекунд) повышалась.
Учёные посмотрели на проблему и с другой стороны: будет ли искусственное повышение доли длинных пульсирующих волн в гиппокампе активировать память? Для запуска длинных волн в строго определённом типе клеток гиппокампа (а именно, в предполагаемых пирамидальных нейронах) были использованы оптогенетические подходы вместе со сложными тестами по прохождению лабиринтов, которые повторяли через 10 дней с теми же животными. Лабиринты, по которым перемещались крысы, требовали от животных не только выработки чёткой программы действий, но и её запоминания, чтобы успешно проходить те же лабиринты спустя некоторое время.
Исследователи смогли показать, что направленное увеличение длительности пульсирующих волн в гиппокампе положительно влияло на память животных.
Примечательно, что оптогенетическая стимуляция приводила не к тому, что доля длинных волн постоянно повышалась в одних и тех же клетках, но к тому, что в длинные волны начинали преобладать во всё большем числе пирамидальных нейронов гиппокампа, так что в процесс запоминания последовательности действий вовлекалось всё большее количество клеток. Таким образом, в основе работы памяти важнейшую роль играет определённая электрическая активность клеток гиппокампа.
#наука
Гистологический препарат сечения мозга мыши. Красным окрашен гиппокампальный интернейрон.
#наука
#наука
Слоистое строение атмосферы Титана, снимок сделан межпланетной станцией «Кассини» в 2004 году. Фото раскрашенно в естественных цветах.
При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и оказывает давление на поверхность в 1,5 раза больше, чем атмосфера Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне.
Граница атмосферы Титана находится примерно в 10 раз выше, чем на Земле. Граница тропосферы располагается на высоте 35 км. До высоты 50 км простирается обширная тропопауза, где температура остаётся практически постоянной, а затем температура начинает расти. Минимальная температура около поверхности составляет −180 °C, при увеличении высоты температура постепенно повышается и на расстоянии 500 км от поверхности достигает −121 °C. Ионосфера Титана имеет более сложную структуру, чем земная, её основная часть располагается на высоте 1200 км. Неожиданностью стало существование на Титане второго, нижнего слоя ионосферы, лежащего между 40 и 140 км.
#космос
При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и оказывает давление на поверхность в 1,5 раза больше, чем атмосфера Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне.
Граница атмосферы Титана находится примерно в 10 раз выше, чем на Земле. Граница тропосферы располагается на высоте 35 км. До высоты 50 км простирается обширная тропопауза, где температура остаётся практически постоянной, а затем температура начинает расти. Минимальная температура около поверхности составляет −180 °C, при увеличении высоты температура постепенно повышается и на расстоянии 500 км от поверхности достигает −121 °C. Ионосфера Титана имеет более сложную структуру, чем земная, её основная часть располагается на высоте 1200 км. Неожиданностью стало существование на Титане второго, нижнего слоя ионосферы, лежащего между 40 и 140 км.
#космос
История происхождения пигмента 'желтый индийский' окутана загадками и легендами. Долгое время считалось, что пигмент получают из мочи коров, специально откармливаемых листвой дерева манго. Эта версия появилась благодаря специфическому запаху готового пигмента, но насколько эта версия правдоподобна - неизвестно. Известно лишь, что секрет производства знал и хранил некий 'Англичанин из Калькутты'.
В 1883 году мистер Махараджи в письме 'Королевскому обществу искусств Англии' описал процесс получения пигмента. На северо-востоке Индии, в штате Бихар коров кормили молодыми листьями манговых деревьев, из-за чего урина становилась яркого желтого цвета. Её собирали и выпаривали жидкость, получившийся пигмент формовали в шары. Европейские импортеры разбивали шары и отделяли зеленоватые и желтоватые части смеси.
#интересное
В 1883 году мистер Махараджи в письме 'Королевскому обществу искусств Англии' описал процесс получения пигмента. На северо-востоке Индии, в штате Бихар коров кормили молодыми листьями манговых деревьев, из-за чего урина становилась яркого желтого цвета. Её собирали и выпаривали жидкость, получившийся пигмент формовали в шары. Европейские импортеры разбивали шары и отделяли зеленоватые и желтоватые части смеси.
#интересное
Конечно же «Англичанин из Калькуты» был отличным комерсантом, и коровы не имели никакого отношения к производству «Индийского жёлтого».
Так как в Европе небыло аналогов данному пигменту, своеобразная история его производства позволила взвинтить цены.
В 1844 году химик из Шотландии Джон Стенхаус изучил пигмент 'индийский желтый', он провёл полный химический анализ и не обнаружил следов аммиака или азота (которые должны были быть в составе, если пигмент действительно произведен из мочи парнокопытных), что подтвердило версию о растительном происхождении пигмента.
На самом деле, сомнения относительно этой версии были всегда. Например, французский художник Жан Мериме в книге «Искусство живописи маслом и фрески», выпущенной в 1839 году, дал более правдоподобное описание процесса производства. Он писал: 'Много лет английские торговцы снабжали нас ярким желтым пигментом, аналогов которого нет в Европе. Мне удалось выяснить, что такой цвет производит некий англичанин в Калькутте, но он держит секрет производства в строжайшей тайне. Я встретил натуралиста, путешествовавшего по Бенгалии и хорошо знавшего этот регион, который утверждал, что пигмент скорее всего добывают из дерева или крупного кустарника под названием мемецилон (memecylon tinctorium), листья которого издавна использовали местные жители. А запах пигмента, полученного из листьев, очень напоминал запах урины коров, это позволяет сделать вывод, что пигмент для цвета «индийский желтый» имеет растительное происхождение.
#интересное
Так как в Европе небыло аналогов данному пигменту, своеобразная история его производства позволила взвинтить цены.
В 1844 году химик из Шотландии Джон Стенхаус изучил пигмент 'индийский желтый', он провёл полный химический анализ и не обнаружил следов аммиака или азота (которые должны были быть в составе, если пигмент действительно произведен из мочи парнокопытных), что подтвердило версию о растительном происхождении пигмента.
На самом деле, сомнения относительно этой версии были всегда. Например, французский художник Жан Мериме в книге «Искусство живописи маслом и фрески», выпущенной в 1839 году, дал более правдоподобное описание процесса производства. Он писал: 'Много лет английские торговцы снабжали нас ярким желтым пигментом, аналогов которого нет в Европе. Мне удалось выяснить, что такой цвет производит некий англичанин в Калькутте, но он держит секрет производства в строжайшей тайне. Я встретил натуралиста, путешествовавшего по Бенгалии и хорошо знавшего этот регион, который утверждал, что пигмент скорее всего добывают из дерева или крупного кустарника под названием мемецилон (memecylon tinctorium), листья которого издавна использовали местные жители. А запах пигмента, полученного из листьев, очень напоминал запах урины коров, это позволяет сделать вывод, что пигмент для цвета «индийский желтый» имеет растительное происхождение.
#интересное
«Поцелуй» (нем. Der Kuß) — картина австрийского художника Густава Климта, написанная в 1907—1908 годах.
Популярность картин этого времени, и «Поцелуя» в том числе, связана не в последнюю очередь с применением художником золота в качестве цвета. Золото с незапамятных времён вызывает магические, религиозные ассоциации в равной мере с чувством материальной ценности, значимости.
Также, в картине использовался «индийский жёлтый».
#исскуство
Популярность картин этого времени, и «Поцелуя» в том числе, связана не в последнюю очередь с применением художником золота в качестве цвета. Золото с незапамятных времён вызывает магические, религиозные ассоциации в равной мере с чувством материальной ценности, значимости.
Также, в картине использовался «индийский жёлтый».
#исскуство
Трехметровая мумия крокодила, входящая в число экспонатов голландского Государственного музея древностей, сумела удивить ученых: под погребальными покровами находилось необычное содержимое.
Государственный музей древностей (Rijksmuseum van Oudheden) в Нидерландах содержит одну из крупнейших мировых коллекций на тему Древнего Египта. В числе его экспонатов – мумия крокодила длиной около трех метров. Еще в 1996 году исследования, проведенные при помощи сканера, показали, что на самом деле мумия является составной: два крокодила разных размеров были запеленуты в один погребальный покров. Недавно в музее открылась новая выставка о Древнем Египте, и в процессе ее подготовки ученых ждал сюрприз. Сверхсовременные технологии сканирования, которые применили специалисты компании Interspectral, позволили детальнее рассмотреть экспонат, и оказалось, что вокруг двух мумий взрослых особей располагается еще около 50 детенышей.
У египтологов нет однозначного ответа на вопрос, зачем это было сделано. По одной из версий, захороненные вместе крокодилы разных возрастов могли символизировать вечную молодость и жизнь после смерти. Другая теория объясняет необычность мумии необходимостью задобрить бога Себека, но в момент подношения ему ритуальных даров не нашлось одного крокодила достойного размера.
#интересное
Государственный музей древностей (Rijksmuseum van Oudheden) в Нидерландах содержит одну из крупнейших мировых коллекций на тему Древнего Египта. В числе его экспонатов – мумия крокодила длиной около трех метров. Еще в 1996 году исследования, проведенные при помощи сканера, показали, что на самом деле мумия является составной: два крокодила разных размеров были запеленуты в один погребальный покров. Недавно в музее открылась новая выставка о Древнем Египте, и в процессе ее подготовки ученых ждал сюрприз. Сверхсовременные технологии сканирования, которые применили специалисты компании Interspectral, позволили детальнее рассмотреть экспонат, и оказалось, что вокруг двух мумий взрослых особей располагается еще около 50 детенышей.
У египтологов нет однозначного ответа на вопрос, зачем это было сделано. По одной из версий, захороненные вместе крокодилы разных возрастов могли символизировать вечную молодость и жизнь после смерти. Другая теория объясняет необычность мумии необходимостью задобрить бога Себека, но в момент подношения ему ритуальных даров не нашлось одного крокодила достойного размера.
#интересное
В исключительно тяжёлых случаях эпилепсии, когда изматывающие приступы повторяются снова и снова, а все испробованные варианты лечения неэффективны, специалисты прибегают к последней возможности облегчить состояние пациента и выполняют хирургическую операцию.
В ходе этого вмешательства, называемого гемисферэктомией, пациенту удаляют одно из полушарий головного мозга. Примечательно, что многие из перенёсших подобную операцию излечиваются от судорог и сохраняют основные двигательные, речевые и когнитивные навыки.
Чтобы понять, как мозг адаптируется к столь экстремальным изменениям, неврологи из Калифорнийского технологического института исследовали шесть таких редких случаев.
Полученные данные в ходе МРТ снимков учёные сравнили не только с результатами контрольной группы, но и с почти полутора тысячами других архивных МРТ-снимков здорового мозга.
Сканирование показало, что нейронные сети у людей с отсутствующим полушарием были на удивление невредимы. Более того, у прооперированых в детстве участников число контактов между некоторыми областями мозга было заметно увеличено по сравнению с нормой.
К примеру, регионы мозга, которые контролируют функцию ходьбы, имели более активные и выраженные связи с участками, ответственными за речь.
Теперь же учёные знают, что главный орган центральной нервной системы способен развивать нейросети даже внутри одного полушария и таким образом компенсировать отсутствие большой части мозга.
И это очень важный вопрос. Дело в том, что обычно прикосновение к одной из сторон тела регистрируется и обрабатывается в противоположной половине мозга. Однако при отсутствии одного из полушарий должна происходить глобальная переорганизация этого процесса, которую ещё необходимо изучить.
Исследователи отмечают, что одна из важнейших целей их работы – предоставить медицинским специалистам как можно больше информации о последствиях обширных операций на мозге и процессе восстановления после них.
Данные, полученные при обследовании людей с высоким уровнем компенсации после перенесённой гемисферэктомии, позволят усовершенствовать этот вид лечения и добиться оптимального результата.
#медицина
В ходе этого вмешательства, называемого гемисферэктомией, пациенту удаляют одно из полушарий головного мозга. Примечательно, что многие из перенёсших подобную операцию излечиваются от судорог и сохраняют основные двигательные, речевые и когнитивные навыки.
Чтобы понять, как мозг адаптируется к столь экстремальным изменениям, неврологи из Калифорнийского технологического института исследовали шесть таких редких случаев.
Полученные данные в ходе МРТ снимков учёные сравнили не только с результатами контрольной группы, но и с почти полутора тысячами других архивных МРТ-снимков здорового мозга.
Сканирование показало, что нейронные сети у людей с отсутствующим полушарием были на удивление невредимы. Более того, у прооперированых в детстве участников число контактов между некоторыми областями мозга было заметно увеличено по сравнению с нормой.
К примеру, регионы мозга, которые контролируют функцию ходьбы, имели более активные и выраженные связи с участками, ответственными за речь.
Теперь же учёные знают, что главный орган центральной нервной системы способен развивать нейросети даже внутри одного полушария и таким образом компенсировать отсутствие большой части мозга.
И это очень важный вопрос. Дело в том, что обычно прикосновение к одной из сторон тела регистрируется и обрабатывается в противоположной половине мозга. Однако при отсутствии одного из полушарий должна происходить глобальная переорганизация этого процесса, которую ещё необходимо изучить.
Исследователи отмечают, что одна из важнейших целей их работы – предоставить медицинским специалистам как можно больше информации о последствиях обширных операций на мозге и процессе восстановления после них.
Данные, полученные при обследовании людей с высоким уровнем компенсации после перенесённой гемисферэктомии, позволят усовершенствовать этот вид лечения и добиться оптимального результата.
#медицина
This media is not supported in your browser
VIEW IN TELEGRAM
Дрейфующие марсианские облака, сфотографированные "Кьюриосити" в мае 2019 года. Анимация NASA/JPL-Caltech.
#космос
#космос
This media is not supported in your browser
VIEW IN TELEGRAM
На полигоне SpaceX Бока Чика в Техасе проводились испытания нового корабля Starship Mk1.
Целью испытаний было максимальное повышение давления в системах корабля. В результате головная часть корабля отделилась и совершила неуправляемый полет, поднявшись на высоты 150м.
Полученный результат не был полной неожиданностью. В результате аварии никто не пострадал.
Илон Маск уточнил, что Mk1 служит для поиска производственных решений, а корабль для полетов имеет «совершенно другую» конструкцию. В компании уже принято решение не использовать Mk1 для полетов, а сразу сосредоточиться на прототипе Mk3, предназначенном для орбитального полета.
#космос
Целью испытаний было максимальное повышение давления в системах корабля. В результате головная часть корабля отделилась и совершила неуправляемый полет, поднявшись на высоты 150м.
Полученный результат не был полной неожиданностью. В результате аварии никто не пострадал.
Илон Маск уточнил, что Mk1 служит для поиска производственных решений, а корабль для полетов имеет «совершенно другую» конструкцию. В компании уже принято решение не использовать Mk1 для полетов, а сразу сосредоточиться на прототипе Mk3, предназначенном для орбитального полета.
#космос
Специалисты НАСА впервые оценили сезонные изменения, происходящие в атмосфере над поверхностью марсианского кратера Гейл. Данные, собранные марсоходом "Кьюриосити" (Curiosity), немало озадачили учёных: они обнаружили колебания концентрации кислорода, которые не объясняет ни один из известных химических процессов.
Согласно измерениям, уровни кислорода в марсианской атмосфере весной и летом примерно на 30% выше ожидаемых. А местной зимой показатели опускаются ниже прогнозируемых отметок.
Этот удивительный "график" повторяется каждый год, но каждый раз количество кислорода слегка изменяется, как будто что-то производит его, а затем забирает.
Команда была настолько удивлена полученными данными, что провела тройную проверку спектрометра. Инструмент был в порядке, и сомневаться в точности показателей не было причин.
Тогда эксперты предположили, что молекулы CO2 или воды (H2O) могли выделять кислород при распаде в атмосфере. Это привело бы к кратковременному росту его содержания.
Однако, чтобы данные совпали, над поверхностью планеты должно было быть в пять раз больше воды, чем имеется. Версия с углекислым газом также оказалась несостоятельной: он распадается слишком медленно, чтобы в течение столь короткого времени уровни кислорода подскочили до зафиксированных отметок.
Кроме того, остаётся непонятным, чем обусловлено сезонное снижение показателей. Может ли солнечное излучение дробить молекулы кислорода на два атома? Нет, заключили учёные. В этом случае для совпадения показателей процесс должен был бы занимать не один сезон, а не менее десяти лет.
По словам специалистов, кислород и метан могут быть произведены как биологическим путём (например, микробами), так и абиотическим (в результате химических процессов в воде и грунте). Учёные рассматривают все варианты, хотя у них нет убедительных доказательств того, что на Марсе существует биологическая активность. Потому пока небиологические объяснения считаются более вероятными.
Также отмечается, марсианская почва содержит большое количество кислорода в составе других соединений (к примеру, перекиси водорода и перхлоратов). Поэтому не исключено, что определённые сезонные процессы могут приводить к выбросам кислорода с поверхности планеты.
#космос
Согласно измерениям, уровни кислорода в марсианской атмосфере весной и летом примерно на 30% выше ожидаемых. А местной зимой показатели опускаются ниже прогнозируемых отметок.
Этот удивительный "график" повторяется каждый год, но каждый раз количество кислорода слегка изменяется, как будто что-то производит его, а затем забирает.
Команда была настолько удивлена полученными данными, что провела тройную проверку спектрометра. Инструмент был в порядке, и сомневаться в точности показателей не было причин.
Тогда эксперты предположили, что молекулы CO2 или воды (H2O) могли выделять кислород при распаде в атмосфере. Это привело бы к кратковременному росту его содержания.
Однако, чтобы данные совпали, над поверхностью планеты должно было быть в пять раз больше воды, чем имеется. Версия с углекислым газом также оказалась несостоятельной: он распадается слишком медленно, чтобы в течение столь короткого времени уровни кислорода подскочили до зафиксированных отметок.
Кроме того, остаётся непонятным, чем обусловлено сезонное снижение показателей. Может ли солнечное излучение дробить молекулы кислорода на два атома? Нет, заключили учёные. В этом случае для совпадения показателей процесс должен был бы занимать не один сезон, а не менее десяти лет.
По словам специалистов, кислород и метан могут быть произведены как биологическим путём (например, микробами), так и абиотическим (в результате химических процессов в воде и грунте). Учёные рассматривают все варианты, хотя у них нет убедительных доказательств того, что на Марсе существует биологическая активность. Потому пока небиологические объяснения считаются более вероятными.
Также отмечается, марсианская почва содержит большое количество кислорода в составе других соединений (к примеру, перекиси водорода и перхлоратов). Поэтому не исключено, что определённые сезонные процессы могут приводить к выбросам кислорода с поверхности планеты.
#космос