Душный NLP
5.77K subscribers
181 photos
2 videos
101 links
Разборы свежих статей от NLP-специалистов Яндекса. Подробно, полезно, с душ(нот)ой.

Вопросы и предложения > @yandex_ml_brand
Download Telegram
Интересное с EMNLP 2025

В Сучжоу в эти дни проходит конференция Conference on Empirical Methods in Natural Language Processing, а мы, как и прежде, рассказываем, об интересных постерах, которые там увидели.

UNCERTAINTY-LINE: Length-Invariant Estimation of Uncertainty for Large Language Models

Очень простая идея, но при этом, кажется, вполне полезная. Странно, что такого никто не делал.

Хотим оценить качество ответа модели на запрос с помощью того, насколько она уверена в том, что пишет. Считаем uncertainty — неуверенность модели в предсказании — как нам нравится (можно перплексию, можно вероятность всего текста, как произведение вероятностей токенов). Получаем величину, которая может зависеть от длины ответа. Утверждается, что это плохое качество метрики, так как у ответов разной длины может быть разное качество.

Авторы строят зависимость uncertainty от длины ответа, аппроксимируют прямой и вычитают полученный линейный тренд из всех значений. Утверждают, что теперь скорректированная uncertainty-метрика лучше коррелирует с качеством ответа. Тестирование проводилось на заданиях WMT (машинный перевод), XSUM (суммаризация), GSM8k (математика, оценивали длину рассуждений). Корреляция тут sample-wise, то есть примеры в бенче ранжируются друг относительно друга правильно.

ECO Decoding: Entropy-Based Control for Controllability and Fluency in Controllable Dialogue Generation

Авторы рассматривают controllable-диалоги с LLM, то есть такие, в которых пользователь задаёт вопрос, а ответить нужно с определённым ограничением: радостно, с удивлением и так далее. Есть LLM, которая отвечает за генерацию ответа, но рядом сидит ещё и классификатор, который определяет ограничение и изменяет распределение вероятностей выходных токенов при генерации, чтобы оно лучше подходило под ограничение.

Существуют разные способы этого влияния классификатора на распределение выходных токенов. Авторы придумали свой, назвали его ECO. Утверждают, что качество выросло на некоторых бенчмарках, при этом без потерь в грамматике.

C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations

Авторы собрали датасет из голосовых фраз и диалогов, в которых что-то неоднозначно: интонация (из-за чего непонятно, это вопрос или утверждение), двусмысленность (Mr. Smith loves music more than his wife — «больше, чем его жена любит музыку» или «больше, чем свою жену»?), пропуски слов и так далее. Датасет на английском и китайском, примеры независимые, так как сложно повторить одно и то же на разных языках. Метрика — процент правильно угаданных смыслов. Из всех опробованных авторами моделей лучше всего себя показывает GPT-4o Audio.

UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance

Авторы хотят обучить модель на коде. Есть два стула: либо супергрязный, но при этом большой разнообразный датасет из данных, которые просто выгрузили отовсюду; либо написать хорошие данные с помощью людей или умных моделей, — но это менее разнообразно, и получается не очень много данных.

Авторы захотели сесть между двух стульев и придумали следующий пайплайн генерации данных. Берём просто сырой код из большого разнообразного датасета. Далее вытаскиваем из кодовых документов отделяемые куски кода, которые можно независимо вызывать. Затем на вызываемую функцию пишем тесты с помощью Llama3-70B-Instruct, запускаем тесты этого куска кода в специальной среде, если тесты не проходятся, фиксим код с помощью той же Llama 70B и повторяем пайплайн.

Когда всё стало хорошо, подчищаем код: пишем docstring, вставляем inline-комментарии, улучшаем стиль. В итоге — хороший датасет.

Проблема в том, что тесты пишет и код исправляет умная большая модель, а датасет используется для обучения маленьких (до 7B). По сути, это дистилляция. Автор говорит, что, наверное, достаточно умная Qwen3 сможет сама учиться на своих данных — звучит сомнительно, так что применимость работы к большим моделям под вопросом. Тем не менее идея может быть полезна как ещё один способ дистилляции кодовых навыков.

Интересное увидел Владислав Негодин

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥1911👍5
Ещё порция интересных статей с EMNLP 2025

Возвращаемся с очередной пачкой постеров, которые привлекли внимание нашей команды на конференции.

Stepwise Reasoning Checkpoint Analysis: A Test Time Scaling Method to Enhance LLMs' Reasoning

Хорошо известно, что качество обученных LLM на инференсе улучшается с помощью Chain-of-Thoughts (CoT). Можно пойти ещё дальше и делать многостадийный CoT, применяя при этом beam search или DVTS. Но тут могут возникать очень похожие траектории, а также существует риск игнорирования моделью промежуточных шагов.

Для решения этих проблем авторы предлагают метод SRCA, который состоит из двух шагов:

1. заставляем модель после каждого шага выдавать промежуточный результат;
2. группируем результаты в кластеры и стартуем следующий шаг из разных кластеров.

Далее результаты со всех шагов агрегируются в финальный результат.

Liaozhai through the Looking-Glass: On Paratextual Explicitation of Culture-Bound Terms in Machine Translation

В статье рассматривается проблема перевода слов или выражений, культурно-специфичных для исходного языка и не существующих на языке перевода. В профессиональном переводе для них часто применяют метод эксплиситации — замены прямого перевода на описательную конструкцию в скобках или в примечании.

Современные MT-модели (в том числе и LLM) переводят большинство таких фраз буквально или копированием, делая результат непонятным. В статье вводят новую задачу перевода с объяснением и предлагают датасет для оценки качества — выделенные культурно-специфичные выражения и референсные сноски от переводчиков. Сегодняшние LLM плохо справляются с выделением терминов для эксплиситации, но генерируют довольно качественные описания (хоть и хуже переводческих).

Too Consistent to Detect: A Study of Self-Consistent Errors in LLMs

Существующие методы unsupervised-детекции ошибок LLM в большинстве основаны на «мерах разброса» — неопределенности вероятностного распределения, различиях среди diverse-генераций и оценке вероятности модели.

Авторы рассматривают ошибки в ответах LLM и вводят понятие self-consistent-ошибок, уверенных с согласованными предсказаниями. Такие ошибки плохо распознаются мерами разброса. Вместе с тем при скейлинге модели их количество растет, а число inconsistent ошибок, наоборот, сильно снижается.

Предлагается использовать пару разных моделей для детекции self-consistent-ошибок. Метрика на основе модели-верификатора принимает на вход активации двух моделей и использует их линейную комбинацию для предсказания QE-метрики. Такая схема распознает намного больше self-consistent-ошибок в небольших версиях Qwen и Llama.

Интересное увидели Александр Шишеня и Николай Карпачёв

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍9🔥52
ReST-MCTS

Авторы сегодняшней статьи рассматривают проблему, из-за которой модель, давая правильный ответ на вопрос, ошибается в рассуждениях. Это случается, например, в ходе решения задач по математическому анализу, где ответ часто — 1, 0, e или pi. Модель может попросту угадать правильный результат, ошибившись в процессе решения.

Для того чтобы модель справлялась с математическими задачами, хорошо подходит process reward modeling (PRM). Это реворд-модель, которая проверяет не окончательный ответ, а каждый шаг решения, что позволяет раньше обнаруживать ошибку в рассуждениях и, соответственно, получать более точные результаты. Однако обучение PRM требует разметки людьми, что дорого.

В публикации предлагается использовать Monte Carlo Tree Search (MCTS), чтобы одновременно учить policy и PRM. Идея в том, чтобы превратить рассуждение в дерево поиска: каждый узел — это промежуточное решение задачи, а ребро — следующий шаг. MCTS с текущей policy генерирует продолжения, обходит дерево и старается тратить больше вычислений там, где выше шанс прийти к правильному ответу. Перспективность каждого следующего шага оценивает обученная PRM.

Придуманный авторами алгоритм ReST-MCTS*, предполагает расчёт инкрементального реворда для частичных решений V_k, который меняется от 0 до max_V (всегда положительное значение). Пустой префикс имеет V_0 = 0, а max_V достигается на завершенном правильном решении. В правильном решении каждый шаг добавляет одинаковый инкремент в V_k:

V_k+1 = V_k + (1-V_k)/(m_k+1)*(1-2*r_sk)

Здесь m_k — количество шагов до конца решения, а r_sk — признак качества шага (0 — для правильного ответа, 1 — для неправильного). Если шаг корректный, множитель (1-2*r_sk) равен 1, а V_k плавно растёт и к последнему шагу доходит до max_V; если в какой-то момент совершается ошибка, множитель становится -1, инкремент меняет знак, и значение начинает уменьшаться.

Когда поиск заканчивается, дерево «превращается» в обучающие данные. Из него берут решения, которые приводят к правильному ответу (это можно проверить по совпадению с эталоном или с помощью отдельного LLM-as-a-Judge). Эти решения используют для SFT-дообучения policy. Все узлы, через которые проходят корректные ветки, автоматически получают целевые значения v — их можно трактовать как псевдоразметку качества шага и использовать для обучения PRM, снова без участия людей.

Дальше цикл повторяется: обновлённые policy и PRM запускаются на новых задачах, строят уже более «умные» деревья, генерируют более правдоподобные решения и оценки V, которые снова идут в обучение.

Разбор подготовил Георгий Иванов

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍11🔥5
Оценка реворд-моделей

Сегодня разберём оценку реворд-моделей (RM). Стандартная метрика в этой сфере — accuracy на парах предпочтений из тест-сета. Оценка реворд-моделей нужна как прокси для end-to-end (e2e) RLHF, потому что для каждого эксперимента обучать модель по реворду — это слишком дорого. К тому же качество e2e не всегда связано напрямую с качеством RM из-за большого количества параметров RLHF-обучения.

В экспериментах с RM нередко применяют синтетический сетап: вместо истинной награды (которую в реальном мире обычно дают люди) используют «сильную» RM. Её предсказания принимают за Golden Reward, а в рамках экспериментов обучают Proxy RM, которые максимально приближают Golden — это существенно снижает стоимость исследований.

Одна из работ на тему оценки RM — The Accuracy Paradox in RLHF, авторы которой обучили отдельные реворд-модели (Longformer-base-4096) на одну из трёх задач: релевантность, полнота и фактологичность, таргеты которых собирались через Golden RM. Дальше под каждую модель обучали RLHF и смотрели на конечное качество. Выяснилось, что максимальное значение accuracy RM не обязательно ведёт к высокому е2е-качеству во всех трёх задачах. На первом графике видно, что оптимальное качество (жёлтый цвет) соответствует среднему значению accuracy.

Для проверки RM используют бенчмарки — например, RewardBench 2. В нём шесть доменов, включая математику, следование инструкциям, безопасность, фактологичность и так далее. Для сравнения на каждый промпт предоставляется один правильный и три неправильных ответа (best-of-4 accuracy).

Эксперименты создателей RewardBench 2 показали, что, вопреки распространённому мнению, RM имеет смысл обучать больше одной эпохи — это даёт рост в качестве. Кроме того, разработчики бенчмарка заключают, что качество растёт, если RM и Policy из одного семейства — например, Llama. А вот чего делать не стоит, так это использовать в RLHF промпты, которые не «видела» реворд-модель (звёзды на изображении 2).

Авторы статьи What Makes a Reward Model a Good Teacher? An Optimization Perspective предлагают смотреть не только на accuracy, но и на дисперсию реворда. Чем она выше, тем быстрее модель оптимизируется под gold reward — то есть, эталонную оценку (изображение 3). Вывод опять-таки следующий: высокая accuracy не ведёт к высокому е2е-качеству.

Разбор подготовил Артём Харинаев

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
13🔥13👍4
Как заставить reasoning-модели меньше галлюцинировать (часть I)

Авторы сегодняшней статьи пытаются ответить на вопрос: можно ли обучить стратегии рассуждения, повышающие фактическую точность (R-)LLM? Отмечено, что reasoning-модели решают математические задачи и пишут код, но в длинных фактологических ответах галлюцинируют больше, чем обычные не-reasoning-версии этих же моделей.

Так, например DeepSeek-R1 и QwQ-32B выдают на 10–13 п.п. больше галлюцинаций, чем соответствующие базовые не-reasoning-версии DeepSeek-V3 и Qwen-2.5-32B на шести датасетах, созданных для проверки фактологичности длинных ответов. В первой части разбора обсудим проблему, заявленную в статье, и метод, предложенный авторами. А во второй — результаты и некоторые выводы.

Проблема в том, что стандартный RL для reasoning-моделей заточен под верифицируемые задачи, для которых награда вычисляется по заранее определённым правилам и проверку которых можно автоматизировать (математика, код). А для ответов, содержащих фактологическую информацию, не существует ни надёжной автоматической проверки (как в RLVR), ни возможности звать человека для проверки.

Эти трудности сильно ограничивают использование фактчек-сигнала в алгоритмах online-RL. Попытки автоматизировать фактчек с помощью FActScore/VeriScore в online-RL-сетапе приводят к «хакингу награды»: модель начинает писать слишком кратко (меньше фактов — меньше шансов ошибиться) или выдаёт длинный, но слабо связанный с вопросом поток общих, пусть и верных, сведений.

Так можно ли обучить стратегии рассуждения, повышающие фактическую точность (R-)LLM? Чтобы ответить на вопрос, авторы используют следующий подход.

Для получения обучающих промптов предлагают интересный ход: инженеры генерируют промпты с помощью Llama 4, обуславливая её на два множества grounding-промптов. Первый набор — WildChat (разнообразные реальные запросы пользователей), второй — LongFact (запросы, требующие фактологически точных ответов). Таким образом получается собрать порядка 7 тысяч синтетических промптов: 3 тысячи для SFT, 4 тысячи для RL, которые похожи на реальные запросы пользователей и в то же время требуют фактологически точных ответов.

Затем делают SFT: фью-шотят базовую Llama-3.1-8B-Instruct для генерации 10 Long-CoT-ответов в формате <think>…</think><answer>…</answer>, их прогоняют через VeriScore и берут ответ с наибольшей наградой за фактологическую точность.

Затем в качестве бейзлайна используют DPO: для сбора пар для обучения аналогично методу в SFT используется VeriScore c небольшой модификацией — берутся пары ответов с максимальной дельтой награды VeriScore и удовлетворяющие условиям:

1) дельта награды должна быть выше определённого порога, чтобы фактчек-сигнал был достаточно сильным;
2) разность длин ответов должна быть меньше определённого порога, чтобы не было «хакинга длины».

Для онлайн-RL в качестве нововведения предлагают награду, которая состоит из трёх слагаемых:

— фактическая точность (Pre): F/(T+1), где F — число подтвержденных фактов, T — всего найденных фактов в ответе (извлекаем их с помощью LLM) (для штрафа за фактологически неверные ответы);
— детальность (Dtl): log(1+F) — поощряет больше правильных фактов, но с дисконтированием на длину (для штрафа за слишком короткие ответы);
— релевантность/полезность (WR): LLM-as-a-judge-метрика — ответ политики сравнивается с ответам реверенсной модели, если судья считает, что ответ политики лучше, то метрика принимает значение 1, в противном случае — 0 (для штрафа за наличие нерелевантных верных фактов).

Чтобы такой reward можно было считать в онлайне, сильно оптимизируют VeriScore: батчуют извлечение фактов, параллелят веб-поиск и так же батчуют проверку утверждений поверх поисковой выдачи. Это позволяет сократить время инференса реворда с двух минут (базовый сетап VeriScore) до примерно пяти секунд на один ответ, что уже пригодно для online-RL. Полученный подход уже используют в GRPO-алгоритме в качестве модели награды.

Разбор подготовил Дмитрий Масный

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
15🔥87
Как заставить reasoning-модели меньше галлюцинировать (часть II)

Продолжаем разбирать статью Learning to Reason for Factuality. В первой части рассказали о проблеме и самом методе, а сегодня — о результатах и интересных выводах.
Оценка происходила на шести сложных бенчмарках фактологических ответов: LongFact, FAVA, AlpacaFact, Biography, FactBench-Hard и Factory-Hard.

Базовая Llama-3.1-8B даёт в среднем 45% фактической точности и 23,5 подтверждённых факта на ответ. После полного пайплайна (SFT + online GRPO с новым ревордом) модель достигает 68,1% фактической точности (Pre), при этом детальность ответа (Dtl) возрастает до 29%, а релевантность - составляет ~54%. Таким образом, в описанном сетапе ризонинг-версия модели стала меньше галлюцинировать без потери полезности относительно своей не-reasoning-версии.

В отличии от online-RL-сетапа «SFT + DPO»-эксперимент сильно просаживает полезность ответа, при примерно таком же качестве детальности (Dtl) и фактической точности (Pre) (сравнивая с SFT + GRPO). Это делает предложенный авторами подход довольно актуальным.

Кроме того, авторы попробовали определить meta-reasoning-страгении в CoT-рассуждениях модели. Для этого использовали Llama-3.1-70B-Instruct. Выяснилось, что стратегии ризонинга для повышения фактологичности ответов модели сильно отличаются от стратегий, которые используются в решении математических и кодинг-задач.

Так, например, наиболее частые стратегии решения математических задач — self-verification, exploration, calculation and backtracking, в то время как для описанного online-RL-подхода основными стратегиями являлись: synthesis, summarization, explanation, evaluation. Этот факт может быть одной из причин большего галлюцинирования ризонинг-моделей, которые обучаются в RLVR-сетапе на задачах математики и кода, на запросах, требующих фактологической точности.

Разбор подготовил Дмитрий Масный

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥102❤‍🔥1👍1
Любопытная статья с NeurIPS 2025

Крупнейшая ML-конференция проходит сразу в двух местах: в Сан-Диего и Мехико. Руководитель группы AI-планирования робота доставки Дмитрий Быков находится в Мексике и делится с нами тем интересным, что видит на мероприятии. Слово Дмитрию.

State Entropy Regularization for Robust Reinforcement Learning

Статья о том, как сделать RL устойчивым. Под устойчивостью понимается, что модель корректно работает в худших кейсах, когда награды или переходы оказываются не такими, как при обучении.

Авторы утверждают, что регуляризация энтропии политики (policy entropy) приводит к тому, что весь эксплорейшен сосредоточен вокруг оптимальной траектории. Поэтому, выходя за её пределы, модель оказывается в незнакомой для себя ситуации. Регуляризация энтропии стэйта (state entropy), в свою очередь, вознаграждает агента за то, что он проходит по тем состояниям, в которых не был.

В статье предлагают использовать регуляризации обеих энтропий, чтобы учиться быть устойчивыми и к большим, и маленьким изменениям. При этом я не заметил сравнения вариантов отдельных регуляризаций против двух вместе.


Больше интересного с NeurIPS ищите в наших каналах ML Underhood, 404 Driver Not Found и CV Time по хештегу #YaNeurIPS25.

Душный NLP
🔥118👍6
Разное о scaling laws

Сегодня — сразу несколько статей о scaling laws. Но начнём с небольшого обзора сферы в целом.

Первая работа о scaling laws вышла в 2020 году. С тех пор многое изменилось, но авторам этой публикации удалось получить многие выводы, на которые впоследствии опирались другие исследователи и инженеры. В частности, один из ценных выводов — лучше получить большую, но не дообученную модель, чем маленькую и обученную до конца.

Через два года вышла статья Training Compute-Optimal Large Language Models, где, на примере модели Chinchilla доказали, что при меньшем размере можно получать более высокое качество путём увеличения количества данных. Это в некотором роде противоречит выводам первой публикации. При этом авторы Training Compute-Optimal Large Language Models проверяли scaling laws на моделях большего размера, чем исследователи в 2020-м.

В следующие годы появилось еще немало работ о scaling laws, авторы которых получали разные результаты. Кроме того, возникали разные scaling laws для соседних доменов.

Scaling Data-Constrained Language Models (2023)

В прошлых статьях по-умолчанию считалось, что токены — бесконечны. Авторы этой работы, напротив, предполагают, что данные когда-то закончатся или их изначально мало. В публикации задаются вопросами: имеет ли смысл повторять данные и чем их можно заменить?

В рамках эксперимента брали датасет, делили его на части, первую из которых — на 100 миллионов токенов — повторяли во время обучения несколько эпох. Выяснилось, что при повторении до четырёх раз качество модели растёт, а дальше — падает. Это справедливо для не очень больших моделей, в противном случае лосс будет увеличиваться. То есть, вывод такой: если у вас немного данных, лучше заняться обучением небольшой модели с повторением, чем тренировкой крупной LLM.

Говоря об увеличении уникальных данных, авторы статьи предлагают, в частности, вливать к текстовой информации код (в публикации это был код на Python) и использовать perplexity-filter. Это поднимает качество при использовании метода повторений, описанного выше.

Scaling Optimal LR Across Token Horizons (2024)

Статья Microsoft, в которой рассматривают, как перенести Learning Rate между обучениями с разным числом токенов. Эксперименты показали, что оптимальный LR при увеличении горизонта (собственно, числа токенов) меньше. Это справедливо даже если увеличивать размер батча (BS).

Predictable Scale: Part I, Step Law — Optimal Hyperparameter Scaling Law in Large Language Model Pretraining (2025)

Авторы исследуют проблему оптимального LR и BS при разном количестве параметров и токенов. Также проверяют, зависит ли scaling law от расписания LR и архитектуры модели. И выводят следующую формулу:

1.79N ^−0,713 * D ^0,307

Где N — число параметров, а D — количество данных в токенах. Что касается BS, то в публикации указывается, что оптимальный составляет 0,58D^0,571

В публикации сравнили две стратегии: decay (min_Ir = max_Ir / 10) и фиксированный min _Ir (в статье — 10^-5). Выяснилось, что оптимум смещается, но в целом закон выполняется. Такой же вывод получили, когда по-разному распределяли параметры внутри модели.

Душный NLP
16🔥7👍31
Метод контекстного параллелизма Ulysses

Для обучения моделей на длинный контекст требуется много памяти под активации. Cкажем, чтобы обучить Qwen3-235B на контекст в 131 тысячу токенов, только под активации требуется более 100 ГБ, даже при использовании чекпоинтинга. Учитывая, что на карте надо хранить ещё саму модель, состояния оптимизатора и прочее, получается слишком много даже для GPU последних поколений. Что можно с этим сделать?

Большинство операций в трансформере (нормы, mlp, residual) над одним токеном происходят независимо от других. Это значит, что мы можем разбить нашу последовательность на N частей и обрабатывать каждую на отдельной GPU. Но у нас всё ещё остаётся селф-аттеншн, для подсчёта которого необходима вся последовательность. Так мы подходим к группе sequence- и context-parallel-методов вроде TPSP, Ring/ZigZag, Ulysses. Кратко расскажем о последнем.

В чём заключается идея:

— каждая GPU внутри context-parallel-группы хранит и обрабатывает только часть последовательности;
— перед тем, как зайти в аттеншн, вычисляем QKV-проекции размера [local_seqlen, global_heads, head_dim];
— делаем all_to_all QKV-проекций и получаем тензор активаций размера [global_seqlen, local_heads, head_dim]. Таким образом, потребление памяти не изменилось, но теперь каждая GPU может вычислять селф-аттеншн независимо, потому что имеет всю последовательность (но только часть голов);
— после вычисления аттеншена и до output-проекции снова делаем all_to_all и снова получаем тензор, разбитый по длине последовательности.

Этот метод обладает серьёзными преимуществами:

— очень прост в реализации, но в то же время может быть эффективным при грамотном перекрытии вычислений и коммуникаций;
— независим от реализации аттеншна и при небольших модификациях работает в том числе с линейными вариантами. Также подходит для мультимодальных сценариев.
Но есть и ограничения. Например, размер CP-группы (Context Parallelism) не может быть больше количества query-голов. В случае GQA требуется копирование KV-голов до размера CP-группы. Кроме того, Ulysses становится довольно дорогим при межхостовых коммуникациях.

Инженеры Яндекса использовали этот метод в Alice AI. Ulysses позволил провести Midtrain-стадию обучения и увеличить контекст с хорошим ускорением за счёт перебалансировки нагрузки между процессами.

Разбор подготовил Антон Андрющенко

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
15🔥7👍3
Подборка статей об альтернативах квадратичному селф-аттеншну

В последние годы всё больше обсуждают альтернативы классическому аттеншну — прежде всего из-за стоимости квадратичного скейлинга и работы с длинными контекстами. Ниже — краткий обзор нескольких любопытных работ и блогпостов на тему линейного, sparse- и гибридного аттеншна.

Why Did MiniMax M2 End Up as a Full Attention Model?

Начнём с поста от команды MiniMax. Их первая модель, MiniMax M1, была гибридной и использовала простой линейный аттеншн на матричных стейтах. Но во второй версии, MiniMax M2, они неожиданно вернулись к полному квадратичному аттеншну — даже без sliding window attention (SWA), который уже встречается в опенсорсных моделях.

Авторы говорят, что гибридная архитектура у них попросту не заработала. На классических текстовых бенчмарках всё выглядело приемлемо, а вот на агентских задачах — с кодом, итерациями и длинным контекстом — модель стабильно проигрывала. SWA тоже не помог: при дообучении моделей, изначально предобученных с полным аттеншном, ключевые головы не перестраивались и деградировали.

Итоговый вывод у MiniMax осторожный: линейные и гибридные подходы выглядят перспективно, но пока не хватает инфраструктуры, реализаций и бенчмарков. Поэтому на данный момент они остаются со стандартным трансформером и считают, что сначала нужно больше данных и экспериментов с длинным контекстом.

The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs

В этой работе изучают training free sparsity в аттеншне и пытаются понять, что реально работает с точки зрения баланса compute/accuracy. На умеренных контекстах спарсификация аттеншна почти не помогает и часто ухудшает качество. На очень длинных — даёт выигрыш по FLOPs, но часто приводит к ухудшению качества: авторы замечают, что метод, работающий на одной задаче, ломается на другой. В среднем удаётся получить около 5× сжатия без сильной деградации качества, но разброс большой, особенно для маленьких моделей.

Evaluating Long Context (Reasoning) Ability

В следующем посте автор критикует популярные long-context-бенчмарки. Он говорит, что needle-in-a-haystack-like-задачи в основном проверяют ретривал и плохо отражают реальную (более сложную) работу с длинным контекстом. На более сложных задачах, где контекст нужно понять, а не просто найти факт (например, в длинном коде с логическими ошибками), модели начинают деградировать уже на десятках тысяч токенов — даже с Full Attention. Вывод: бенчмарков, которые реально проверяют ризонинг на длинном контексте, пока недостаточно.

Kimi Linear: an expressive, efficient attention architecture

Спустя неделю после скептического поста MiniMax Moonshot AI (авторы модели Kimi K2 и не только) выпустили работу с почти противоположным тезисом: Linear Attention работает. В Kimi Linear предложили Kimi Delta Attention с gated delta rule и рекуррентной матричной памятью. В модели используют соотношение 3:1 линейных слоёв к Full Attention. Качество на бенчмарках в статье не хуже полного аттеншна, а эффективность выше: prefill на длинных промптах быстрее примерно в три раза, декодинг и memory footprint тоже выигрывают за счёт меньшей зависимости от KV-cache.

Разбор подготовил Иван Рубачёв, а ещё он приглашает вас на семинары Yandex Research Reading Group

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍9🔥5