История науки. Американский физик Робли Эванс (справа снизу) в составе баскетбольной команды Калифорнийского технологического института, ок. 1928 г. Эванс посвятил жизнь изучению явлений радиоактивности. В своей докторской диссертации он исследовал естественный радиационный фон Земли и методы его отделения от фона, порождаемого космическим излучением (писал у Милликена, на минуточку!). Впоследствии много работал в радиационной медицине. В частности, именно Эванс одним из первых изучил влияние радия на здоровье человека (в то время радий-содержащие препараты были последним писком моды и использовались повсеместно в быту и народной медицине). Ну, и как видно, мячик тоже неплохо кидал.
Что думаете?
#scihistory
Что думаете?
#scihistory
This media is not supported in your browser
VIEW IN TELEGRAM
Изображение. Процесс нанесения отражающего покрытия на зеркало телескопа строящейся Обсерватории имени Веры Рубин в Чили. Площадь поверхности сложного зеркала с двумя оптическими поверхностями различной кривизны примерно соответствует размеру теннисного корта. Вкупе со здоровенной трехгигапиксельной камерой будущий телескоп будет изучать распределение темной энергии — силы, расширяющей нашу вселенную. Каждые три ночи в течение десяти лет синоптический (то есть, собирающий данные сразу с большой площади) телескоп будет делать снимок всего Южного Полушария небесной сферы. А вот тут еще побольше информации — тыц.
Что думаете?
#scimage
Что думаете?
#scimage
This media is not supported in your browser
VIEW IN TELEGRAM
Явление. Ребята из Центра космических полетов Годдарда (NASA) представили красивую модель циркуляции углекислого газа в земной атмосфере. Модель называется GEOS (Goddard Earth Observing System), она достаточно сложна и объединяет данные от миллиардов датчиков, расположенных на поверхности Земли, спутников (таких, как MODIS и Suomi-NPP), а также суперкомпьютерных симуляций.
Хорошо видны суточные колебания эмиссии углекислого газа, источником которых являются растения (в ходе ночной фазы фотосинтеза часть захваченного днем CO2 испускается обратно в атмосферу). Рукотворные источники СО2 разнятся в зависимости от региона: В Китае, США и Южной Азии это в основном электростанции и автомобили, а в Африке и Южной Америке — сельскохозяйственная деятельность, а также сжигание угля и нефти.
По ссылке больше красивых анимаций и пояснения — тыц.
Что думаете?
#effect
Хорошо видны суточные колебания эмиссии углекислого газа, источником которых являются растения (в ходе ночной фазы фотосинтеза часть захваченного днем CO2 испускается обратно в атмосферу). Рукотворные источники СО2 разнятся в зависимости от региона: В Китае, США и Южной Азии это в основном электростанции и автомобили, а в Африке и Южной Америке — сельскохозяйственная деятельность, а также сжигание угля и нефти.
По ссылке больше красивых анимаций и пояснения — тыц.
Что думаете?
#effect
Новости науки (наконец-то!). Вдохновившись примером всемирного хранилища семян на Шпицбергене, исследователи из Смитсоновского института строят планы пойти еще дальше (в прямом и переносном смыслах) и создать хранилище биоматериала земных видов аж на Луне!
Самым сложным в сохранении биоматериала является то, что для этого необходимы достаточно низкие температуры. И если для сохранения семян температур чуть ниже нуля вполне достаточно, то биоматериал животных требует еще на добрую сотню градусов ниже. На Земле таких холодных мест нет, поэтому возникает потребность в сложной криогенной инфраструктуре и постоянных затратах энергии, которые в долгосрочной перспективе (а тем более с заделом на потенциальные глобальные катастрофы) трудноосуществимы. Кстати, то же хранилище на Шпицбергене, которое специально построено в холодном регионе, чтобы уменьшить энергозатраты, недавно подтопило из-за глобального потепления.
А вот космическое пространство своими низкими температурами славится, и, к примеру, на Луне, в полярных регионах, есть глубокие кратеры, никогда не видевшие солнечного света (так называемые "регионы вечной тени"), температура в которых уже слабо отличается от абсолютного нуля (до -246°C), чего вполне достаточно для хранения биологических образцов без каких-либо затрат. энергии
Конечно, другой важной проблемой является устойчивость к радиации, которой в космосе тоже хоть отбавляй, и над этой проблемой ученые собираются работать на предстоящих этапах исследования.
Первоначально в хранилище планируется поместить биоматериал видов, находящихся под угрозой исчезновения, но в последствии, если удастся привлечь финансирование, можно будет сделать хранилище общественным и размещать там материал по запросу всяких богатых дядек.
Сохранять, кстати, хотят фибропласты, так как они во всех отношениях устойчивее и неприхотливее более традиционных для сохранения клеток.
Исследование опубликовано в BioScience 31 июля 2024 года.
Что думаете?
#news
Самым сложным в сохранении биоматериала является то, что для этого необходимы достаточно низкие температуры. И если для сохранения семян температур чуть ниже нуля вполне достаточно, то биоматериал животных требует еще на добрую сотню градусов ниже. На Земле таких холодных мест нет, поэтому возникает потребность в сложной криогенной инфраструктуре и постоянных затратах энергии, которые в долгосрочной перспективе (а тем более с заделом на потенциальные глобальные катастрофы) трудноосуществимы. Кстати, то же хранилище на Шпицбергене, которое специально построено в холодном регионе, чтобы уменьшить энергозатраты, недавно подтопило из-за глобального потепления.
А вот космическое пространство своими низкими температурами славится, и, к примеру, на Луне, в полярных регионах, есть глубокие кратеры, никогда не видевшие солнечного света (так называемые "регионы вечной тени"), температура в которых уже слабо отличается от абсолютного нуля (до -246°C), чего вполне достаточно для хранения биологических образцов без каких-либо затрат. энергии
Конечно, другой важной проблемой является устойчивость к радиации, которой в космосе тоже хоть отбавляй, и над этой проблемой ученые собираются работать на предстоящих этапах исследования.
Первоначально в хранилище планируется поместить биоматериал видов, находящихся под угрозой исчезновения, но в последствии, если удастся привлечь финансирование, можно будет сделать хранилище общественным и размещать там материал по запросу всяких богатых дядек.
Сохранять, кстати, хотят фибропласты, так как они во всех отношениях устойчивее и неприхотливее более традиционных для сохранения клеток.
Исследование опубликовано в BioScience 31 июля 2024 года.
Что думаете?
#news
Цитата. "Альберт Эйнштейн, который во многих отношениях был отцом квантовой механики, имел с ней характерные отношения любви-ненависти. Его полемика с Нильсом Бором — Бор полностью принимал квантовую механику, а Эйнштейн относился к ней крайне скептически — хорошо известна в истории науки. Общепринятое мнение среди большинства физиков состоит в том, что Бор победил, а Эйнштейн проиграл. На мой взгляд, и, я думаю, это мнение разделяет растущее число физиков, такая оценка несправедлива в отношении взглядов Эйнштейна.
Бор и Эйнштейн оба были очень глубокими мыслителями. Эйнштейн изо всех сил стремился показать, что квантовая механика внутренне противоречива; Бор, однако, всегда находил возражения на его аргументы. Но в своей последней атаке Эйнштейн указал на нечто столь глубокое, столь контринтуитивное, столь тревожащее и в то же время столь возбуждающее, что в начале XXI века эта идея вновь вдохновляет физиков-теоретиков. Единственным ответом Бора на последнее великое открытие Эйнштейна — открытие квантовомеханической запутанности — было его игнорирование.
Явление запутанности — это ключевой факт квантовой механики, факт, который делает ее столь отличной от классической физики. Благодаря ему под вопросом оказалось все наше понимание того, что в физическом мире является реальным. Согласно обыденному интуитивному представлению о физических системах, если мы всё знаем о системе, то есть всё, что в принципе о ней можно знать, то мы знаем также всё о ее частях. Если мы располагаем полным знанием об автомобиле, то знаем всё о его колесах, двигателе, коробке передач — вплоть до последнего винтика, удерживающего обивку. Будет абсурдом, если механик скажет: "Я знаю всё о вашем автомобиле, но, к сожалению, я ничего не могу сказать о его деталях".
Но ведь именно это Эйнштейн объяснял Бору: в квантовой механике можно знать всё о системе и ничего о ее отдельных частях, однако Бор не смог признать этот факт, который также игнорировался в нескольких поколениях учебников по квантовой физике" (с) Леонард Сасскинд, "Квантовая механика: теоретический минимум"
Что думаете?
#цитата
Бор и Эйнштейн оба были очень глубокими мыслителями. Эйнштейн изо всех сил стремился показать, что квантовая механика внутренне противоречива; Бор, однако, всегда находил возражения на его аргументы. Но в своей последней атаке Эйнштейн указал на нечто столь глубокое, столь контринтуитивное, столь тревожащее и в то же время столь возбуждающее, что в начале XXI века эта идея вновь вдохновляет физиков-теоретиков. Единственным ответом Бора на последнее великое открытие Эйнштейна — открытие квантовомеханической запутанности — было его игнорирование.
Явление запутанности — это ключевой факт квантовой механики, факт, который делает ее столь отличной от классической физики. Благодаря ему под вопросом оказалось все наше понимание того, что в физическом мире является реальным. Согласно обыденному интуитивному представлению о физических системах, если мы всё знаем о системе, то есть всё, что в принципе о ней можно знать, то мы знаем также всё о ее частях. Если мы располагаем полным знанием об автомобиле, то знаем всё о его колесах, двигателе, коробке передач — вплоть до последнего винтика, удерживающего обивку. Будет абсурдом, если механик скажет: "Я знаю всё о вашем автомобиле, но, к сожалению, я ничего не могу сказать о его деталях".
Но ведь именно это Эйнштейн объяснял Бору: в квантовой механике можно знать всё о системе и ничего о ее отдельных частях, однако Бор не смог признать этот факт, который также игнорировался в нескольких поколениях учебников по квантовой физике" (с) Леонард Сасскинд, "Квантовая механика: теоретический минимум"
Что думаете?
#цитата
APOD. Активная галактика NGC 1275, расположенная в 240 миллионах световых лет от нас в созвездии Персея. Сверхмассивная черная дыра, находящаяся в ее центре, пирует на славу, разрывая и пожирая целые небольшие галактики, имевшие неосторожность приблизиться к монстру. Красные нити, радиально отходящие от центра и наделяющие галактику ее характерной необычной внешностью, являются частично остатками столкнувшихся галактик и частично газом, исторгнутым сверхмассивной черной дырой. Как эти нити образуются — не совсем понятно, ведь активные пертурбации, происходящие в системе, должны разрушать такие структуры. Нити довольно тонки, всего около 20 св. л. шириной, а длина их может достигать до нескольких десятков тысяч световых лет. Считается, что их устойчивость поддерживается слабым галактическим магнитным полем.
Кстати, на самом деле, мы видим две галактики, одна из которых находится чуть ближе к нам и прямо сейчас с огромной скоростью несется на встречу своей участи.
Что думаете?
#apod
Кстати, на самом деле, мы видим две галактики, одна из которых находится чуть ближе к нам и прямо сейчас с огромной скоростью несется на встречу своей участи.
Что думаете?
#apod
Новости науки. Самая черная краска или поверхность угля отражают примерно 3% падающего на них естественного света. Они выглядят достаточно черными, но все равно отражают довольно много для приложений, в которых хотелось бы не отражать совсем ничего. Например, в сверхточных астрономических приборах, в которых каждый фотон на счету. Хотя человечество уже изобрело материалы, отражающие лишь 0.1% излучения (например, Vantablack, состоящий из вертикального "леса" углеродных нанотрубок), они весьма дороги — тот же Vantablack стоит больше 400 долларов за десятисантиметровый квадратик.
Но вот, кажется, ребятам из Университета Британской Колумбии удалось изобрести еще один сверхчерный материал, который к тому же относительно дешев, так как производится из обычной древесины. Материал, названный Nxylon, получили совершенно случайно, когда экспериментировали с воздействием высокоэнергетической плазмы на поверхность древесины липы. Липа сама по себе достаточно пористая, но взаимодействие с плазмой каким-то образом нарушает клеточную структуру дерева, модифицируя поры так, что они гораздо эффективнее улавливают свет.
Хотя материал по качеству уступает Vantablack, отражая чуть меньше процента света, этого, благодаря его дешевизне, может быть достаточно для многих инженерных применений.
Другой важный аспект — даже если материал покрыть тонким металлическим слоем, например, золота, сделав поверхность проводящей, его светопоглощающие свойства сохраняются.
В общем, ребята решили завязать с наукой и создают компанию по масштабированию производства Nxylon. Не могу их винить.
Статья опубликована в Advanced Sustainable Systems 16 июня 2024 года.
Что думаете?
#news
Но вот, кажется, ребятам из Университета Британской Колумбии удалось изобрести еще один сверхчерный материал, который к тому же относительно дешев, так как производится из обычной древесины. Материал, названный Nxylon, получили совершенно случайно, когда экспериментировали с воздействием высокоэнергетической плазмы на поверхность древесины липы. Липа сама по себе достаточно пористая, но взаимодействие с плазмой каким-то образом нарушает клеточную структуру дерева, модифицируя поры так, что они гораздо эффективнее улавливают свет.
Хотя материал по качеству уступает Vantablack, отражая чуть меньше процента света, этого, благодаря его дешевизне, может быть достаточно для многих инженерных применений.
Другой важный аспект — даже если материал покрыть тонким металлическим слоем, например, золота, сделав поверхность проводящей, его светопоглощающие свойства сохраняются.
В общем, ребята решили завязать с наукой и создают компанию по масштабированию производства Nxylon. Не могу их винить.
Статья опубликована в Advanced Sustainable Systems 16 июня 2024 года.
Что думаете?
#news
История науки. Американский физик Фрэнсис Банди на установке для синтеза искусственных алмазов, 1971 г. Работая в General Electric, Банди и его группа в 1954 году разработали метод синтеза искусственных алмазов из графита при высоком давлении с сульфидом железа в качестве катализатора. Алмазный пресс на фотографии — промышленная установка-детище Банди. Помимо физики, Банди также был большим энтузиастом планеризма, совершив более 8000 вылетов, а также подрабатывая инструктором (видимо, искусственные алмазы не приносили достаточно денег).
Что думаете?
#scihistory
Что думаете?
#scihistory
Изображение. Панорамное изображение решетчатого нейтронного интерферометра, установленного на линии холодных нейтронов в Институте Пауля Шеррера в Филлигене. Прибор предназначен для измерения верхнего предела заряда нейтрона с помощью отклонения нейтронного пучка во внешнем электрическом поле.
Даже о такой банальной сущности, как электрический заряд, мы до сих пор многого не понимаем. До сих пор не ясно, квантуется он или нет. Непонятно, почему все наблюдаемые заряды кратны некоторому минимально возможному (одной трети заряда электрона). Все это нстандартной моделью не объясняется. Так что, можно сказать, что прибор предназначен для исследования физики за рамками стандартной модели.
Что думаете?
#scimage
Даже о такой банальной сущности, как электрический заряд, мы до сих пор многого не понимаем. До сих пор не ясно, квантуется он или нет. Непонятно, почему все наблюдаемые заряды кратны некоторому минимально возможному (одной трети заряда электрона). Все это нстандартной моделью не объясняется. Так что, можно сказать, что прибор предназначен для исследования физики за рамками стандартной модели.
Что думаете?
#scimage
Цитата. "Когда я впервые начал заниматься алгебраической геометрией, я счел этот предмет привлекательным по двум причинам: во-первых, потому что он имел дело с такими приземленными и конкретными объектами, как проективные кривые и поверхности; во-вторых, потому что это была небольшая, спокойная область, в которой десяток людей не набрасывались на каждую новую идею, как только она появлялась. Как оказалось, эта область, похоже, приобрела репутацию эзотерической, эксклюзивной и очень абстрактной, с приверженцами, которые тайно замышляют захватить всю остальную математику! В одном отношении этот последний пункт точен: алгебраическая геометрия - это предмет, который часто связан с очень большим количеством других областей - аналитической и дифференциальной геометрией, топологией, К-теорией, коммутативной алгеброй, алгебраическими группами и теорией чисел, например, и как дает, так и получает теоремы, техники и примеры от всех них. И, конечно, работа Гротендика привнесла в эту область некоторые очень абстрактные и очень мощные идеи, которые довольно трудно усвоить. Но этот предмет, как и все предметы, имеет двойственный аспект в том смысле, что все эти абстрактные идеи рухнули бы под собственным весом, если бы не опора, предоставляемая конкретной классической геометрией" (с) Дэвид Мамфорд, "The Red Book of Varieties and Schemes"
Что думаете?
#цитата
Что думаете?
#цитата
Новости науки. Ребята из американского Университета Пердью замутили самую маленькую в мире дискотеку (это они сами пишут)! В качестве диско-шара выступил флюоресцирующий наноалмаз размером меньше микрона, левитирующий над подложкой с помощью специальной ионной ловушки и вращающийся с огромной частотой (до 20 МГц).
Цель эксперимента — изучение поведения кубитов в наноалмазе, в роли которых выступают так называемые NV-центры — особые дефекты в кристаллической структуре алмаза, состоящие из атома азота и вакансии, очень популярные нынче объекты для моделирования всяческих квантовых штук. Согласно теории, на которую опираются авторы, вращение с высокой угловой скоростью должно некоторым образом воздействовать на спин кубитов, а посредством наблюдения фазы Берри (я даже не буду пытаться объяснить, что это. Нет, правда, не лезьте туда) можно попытаться измерить, как кубиты взаимодействуют с гравитацией, а через это, соответственно, лучше понять, как интегрировать гравитацию в квантовую механику — гранд-задача, остро стоящая перед современной физикой.
Не углубляясь в дебри теории, в очередной раз захотелось отметить, какие поразительные с технической точки зрения эксперименты удается реализовывать сегодняшним работягам-аспирантам.
Статья опубликована в Nature Communications 13 июня 2024 года.
Что думаете?
#news
Цель эксперимента — изучение поведения кубитов в наноалмазе, в роли которых выступают так называемые NV-центры — особые дефекты в кристаллической структуре алмаза, состоящие из атома азота и вакансии, очень популярные нынче объекты для моделирования всяческих квантовых штук. Согласно теории, на которую опираются авторы, вращение с высокой угловой скоростью должно некоторым образом воздействовать на спин кубитов, а посредством наблюдения фазы Берри (я даже не буду пытаться объяснить, что это. Нет, правда, не лезьте туда) можно попытаться измерить, как кубиты взаимодействуют с гравитацией, а через это, соответственно, лучше понять, как интегрировать гравитацию в квантовую механику — гранд-задача, остро стоящая перед современной физикой.
Не углубляясь в дебри теории, в очередной раз захотелось отметить, какие поразительные с технической точки зрения эксперименты удается реализовывать сегодняшним работягам-аспирантам.
Статья опубликована в Nature Communications 13 июня 2024 года.
Что думаете?
#news
APOD. Мы привыкли наблюдать звездное небо в видимом диапазоне электромагнитного спектра, в котором звезды яркие, а облака холодного межзвездного водорода темны и закрывают от нас свет удаленных светил. Но на самом деле эти так называемые "галактические перистые облака", слегка подогреваемые окружающими звездами, тоже светятся, только в дальнем инфракрасном спектре на длинах волн от 100 до 250 мкм. В этом диапазоне звезды практически необнаружимы и можно видеть, что представляет собой газообразная часть галактики.
Впервые это излучение было открыто в Паломарской обсерватории в 1965 году, а его инфракрасные свойства подробно изучались в 70-е и 80-е гг. Текущий же снимок составлен по комбинации данных с двух космических аппаратов — Infrared Astronomical Satellite (IRAS) и Cosmic Background Explorer (COBE).
Что думаете?
#apod
Впервые это излучение было открыто в Паломарской обсерватории в 1965 году, а его инфракрасные свойства подробно изучались в 70-е и 80-е гг. Текущий же снимок составлен по комбинации данных с двух космических аппаратов — Infrared Astronomical Satellite (IRAS) и Cosmic Background Explorer (COBE).
Что думаете?
#apod
История науки. Рубрика "физики кушают".
1) Исидор Айзек Раби жарит хот-доги на нагретой поверхности циклотрона. Снизу фото подпись: "Быть физиком весело. И. А. Раби от Фритца Горо". Сейчас бы за такое — по самые уши.
2) Антонио Ростаньи, Глеб Ватагин, Энрико Персико, Энрико Ферми и жена Ростаньи обедают снаружи небольшого каменного здания, 1932 г..
3) Валентин Телегди оценивает качество угощения.
4) Мельба Филипс и Герман Уильям Кох лакомятся мороженым на встрече Американского Института Физики в Лабораториях Белла, 1982 г.
Если не указано, локация и дата фотографий не обнаружены, к сожалению.
Что думаете?
#scihistory
1) Исидор Айзек Раби жарит хот-доги на нагретой поверхности циклотрона. Снизу фото подпись: "Быть физиком весело. И. А. Раби от Фритца Горо". Сейчас бы за такое — по самые уши.
2) Антонио Ростаньи, Глеб Ватагин, Энрико Персико, Энрико Ферми и жена Ростаньи обедают снаружи небольшого каменного здания, 1932 г..
3) Валентин Телегди оценивает качество угощения.
4) Мельба Филипс и Герман Уильям Кох лакомятся мороженым на встрече Американского Института Физики в Лабораториях Белла, 1982 г.
Если не указано, локация и дата фотографий не обнаружены, к сожалению.
Что думаете?
#scihistory
Изображение. Экспериментальный лунный микроровер от японской компании ispace, тестируемый в земном испытательном павильоне, имитирующем лунный рельеф. Цель испытаний — научить ровер принимать самостоятельные решения при поиске оптимального маршрута и исследовании лунной поверхности.
Лунная программа ispace разбита на несколько этапов, первый из которых — посадка лунного модуля Hakuto-R, пока что без ровера, зато с диском песни "SORATO" японской группы Sakanaction (там своя история) — к сожалению закончился неудачей в 2022 году — связь с модулем была потеряна в момент посадки. Второй этап миссии — тоже посадка модуля, но уже с умным ровером, запланирована на конец этого года. Болеем за ребят. На ровере, кстати, тоже будет диск, содержащий данные о 275 языках и другие артефакты культуры. Для потомков, так сказать.
Что думаете?
#scimage
Лунная программа ispace разбита на несколько этапов, первый из которых — посадка лунного модуля Hakuto-R, пока что без ровера, зато с диском песни "SORATO" японской группы Sakanaction (там своя история) — к сожалению закончился неудачей в 2022 году — связь с модулем была потеряна в момент посадки. Второй этап миссии — тоже посадка модуля, но уже с умным ровером, запланирована на конец этого года. Болеем за ребят. На ровере, кстати, тоже будет диск, содержащий данные о 275 языках и другие артефакты культуры. Для потомков, так сказать.
Что думаете?
#scimage
Новости науки. Физики из Университета Аризоны придумали микроскоп, способный фотографировать электроны в реальном времени, с аттосекундным разрешением.
Увидеть микрочастицы трудно не только потому, что они очень маленькие, но и потому, что они невероятно быстрые. Несмотря на то, что скорость электронов в твердых телах значительно меньше световой, характерное время протекания атомных процессов все равно измеряется единицами аттосекунд (аттосекунда это 10^-18 секунды).
Временное разрешение наших приборов определяется тем, насколько короткие лазерные импульсы мы можем сгенерировать. Это как экспозиция камеры — чем дольше импульс, тем более размазанным получается движущийся измеряемый объект. Аттосекундная физика и аттосекундные лазеры, в принципе, не новы, но ранее длина импульсов измерялась либо несколькими аттосекундами, либо цугами из множества аттосекундных импульсов. Это уже очень здорово, но все еще недостаточно для того, чтобы разрешить электроны в твердых телах.
Но вот ребята придумали, как это сделать, и запихнули аттосекундную камеру в просвечивающий электронный микроскоп. Временное разрешение получилось настолько малым, что теперь стало возможным визуализировать положение электронов в реальном времени. К примеру, на изображении ниже показано, как меняется электронная плотность в листе графена в течение нескольких фемтосекунд при приложении внешнего переменного потенциала. Стоп-кадры в определенные моменты времени действительно позволяют увидеть локализацию электронных состояний с очень хорошей точностью. Красным цветом показана высокая плотность состояний, белым — средняя и синим/черным — низкая. Черной сеточкой наложены положения атомов углерода и связей между ними.
Глубоко вдаваться в детали принципа работы получившегося устройства не буду, но там все не так просто — нужна хитрая комбинация трех импульсов — двух лазерных и одного электронного. К сожалению, без подобных технических хитростей аттосекундное разрешение по-прежнему недостижимо.
Работа опубликована в Science Advances 21 августа 2024 года.
Что думаете?
#news
Увидеть микрочастицы трудно не только потому, что они очень маленькие, но и потому, что они невероятно быстрые. Несмотря на то, что скорость электронов в твердых телах значительно меньше световой, характерное время протекания атомных процессов все равно измеряется единицами аттосекунд (аттосекунда это 10^-18 секунды).
Временное разрешение наших приборов определяется тем, насколько короткие лазерные импульсы мы можем сгенерировать. Это как экспозиция камеры — чем дольше импульс, тем более размазанным получается движущийся измеряемый объект. Аттосекундная физика и аттосекундные лазеры, в принципе, не новы, но ранее длина импульсов измерялась либо несколькими аттосекундами, либо цугами из множества аттосекундных импульсов. Это уже очень здорово, но все еще недостаточно для того, чтобы разрешить электроны в твердых телах.
Но вот ребята придумали, как это сделать, и запихнули аттосекундную камеру в просвечивающий электронный микроскоп. Временное разрешение получилось настолько малым, что теперь стало возможным визуализировать положение электронов в реальном времени. К примеру, на изображении ниже показано, как меняется электронная плотность в листе графена в течение нескольких фемтосекунд при приложении внешнего переменного потенциала. Стоп-кадры в определенные моменты времени действительно позволяют увидеть локализацию электронных состояний с очень хорошей точностью. Красным цветом показана высокая плотность состояний, белым — средняя и синим/черным — низкая. Черной сеточкой наложены положения атомов углерода и связей между ними.
Глубоко вдаваться в детали принципа работы получившегося устройства не буду, но там все не так просто — нужна хитрая комбинация трех импульсов — двух лазерных и одного электронного. К сожалению, без подобных технических хитростей аттосекундное разрешение по-прежнему недостижимо.
Работа опубликована в Science Advances 21 августа 2024 года.
Что думаете?
#news
Цитата. "Математика представляет собой исследование, которое может быть продолжено, если начинать с ее наиболее знакомых частей, в двух противоположных направлениях. Первое — хорошо знакомое направление — является конструктивным с все более увеличивающейся сложностью: от целых чисел к дробям, действительным числам, комплексным числам; от сложения и умножения к дифференцированию и интегрированию и далее к высшей математике. Другое, менее знакомое, направление идет через анализ к все большей абстрактности и логической простоте; вместо того, чтобы спрашивать, что может быть определено и выведено из предполагаемых начал, мы ищем общие идеи и принципы, в терминах которых могут быть определены или выведены наши начальные принципы. Отличие математической философии от обычной математики заключается в упоре на второе направление. Но следует понимать, что это различие не столько в предмете, сколько в состоянии ума исследователя. Ранние греческие геометры, переходя от эмпирических правил египтян для земельных измерений к общим предположениям, обосновывавшим эти правила, то есть к аксиомам и постулатам Евклида, занимались математической философией, имея в виду приведенное выше определение. Но как только аксиомы и постулаты были получены, их дедуктивное использование в том виде, как мы его находим у Евклида, принадлежит математике в обычном смысле. Различие между математикой и математической философией зависит от интереса, инспирирующего исследование, и от стадии, достигнутой в ходе исследования, а не от содержания самого исследования" (с) Бертран Рассел, "Введение в математическую философию"
Что думаете?
#цитата
Что думаете?
#цитата