Python/ django
62.8K subscribers
2.33K photos
160 videos
48 files
3.07K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🔍 PaddleOCR-VL-1.5 внезапно ворвался в топ open-source OCR - и при этом модель всего на 0.9B параметров.

Фактически это сейчас один из самых сильных открытых инструментов для распознавания текста и понимания документов - при очень скромном размере по меркам современных AI-моделей.

Ирония в тайминге:

• Сначала вышел Kimi 2.5
• Потом DeepSeekOCR-2
• И буквально следом - PaddleOCR-VL-1.5

Неделя просто взрывная для направления AI, которое занимается документами: сканы, PDF, таблицы, формы, смешанный текст и структура.

Что особенно интересно - это не просто классический OCR "картинка → текст", а визуально-языковая модель. То есть она лучше понимает структуру документа: блоки, таблицы, взаимосвязи между элементами, а не только символы.

Для разработчиков это означает более точный парсинг документов, автоматизацию работы с формами, счетами, договорами, отчетами и любыми полу-структурированными файлами - и все это на базе полностью открытой модели.

Порог входа в продвинутую document AI снова стал ниже.

huggingface.co/PaddlePaddle/PaddleOCR-VL-1.5

@pythonl
👍158🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Python ищет дубликаты файлов

Когда папка разрастается, дубликаты начинают тихо съедать место - особенно если ты сохраняешь одно и то же под разными именами.

Быстрый способ на Python - посчитать хеш каждого файла и собрать группы с одинаковым хешем. Так ты сразу увидишь, какие файлы реально одинаковые по содержимому, а не только по названию.


import os, hashlib

m = {}
for n in os.listdir("."):
if os.path.isfile(n):
with open(n, "rb") as f:
h = hashlib.md5(f.read()).hexdigest()
m.setdefault(h, []).append(n)

for v in m.values():
if len(v) > 1:
print("DUP:", v)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥98😱1
🚀 RenderCV: Open-Source AI для создания CV/резюме на лету

RenderCV - это GitHub-проект, который автоматизирует генерацию профессионального резюме с помощью AI. Он берет базовые данные (например, профиль, опыт, навыки) и формирует красиво отформатированный CV с умным распределением разделов, прицелом на ATS-системы (системы автоматического трекинга резюме) и внимание к деталям.

🔍 Основные фишки
- 💡 AI-генерация контента - на основе вводимых данных автоматически создаются описания опыта, навыков и достижений
- 📄 Готовые шаблоны — вывод резюме в структурированном виде, готовом для печати или публикации
- ⚙️ Настраиваемость — легко адаптировать под свой стиль, менять поля и формат
- 🤖 Поддержка AI-логики для переработки сухих фактов в интересные, читабельные формулировки

Простой рабочий цикл:
1) Вводишь базовые данные (имя, опыт, навыки)
2) AI дописывает грамотные описания
3) Получаешь готовое резюме без лишних усилий

💡 Это особенно полезно начинающим специалистам, карьерным переходам или тем, кто не любит вручную вырезать и править резюме перед каждой подачей.

🛠 Пример использования (в духе проектов этого класса):


# Клонируем репозиторий
git clone https://github.com/rendercv/rendercv.git

# Переходим в папку
cd rendercv

# Устанавливаем зависимости и запускаем
# (инструкции могут отличаться в зависимости от реализации)
npm install
npm start



https://github.com/rendercv/rendercv
6👍5🔥2🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 PYTHON МАТЕМАТИКА КАК У ПРОФИ

Ппрофессиональный подход к математике в Python строится не вокруг «посчитать формулу», а вокруг правильного стека инструментов и воспроизводимости. Всегда разделяй символьную математику, численные методы и работу с данными.

Для аналитики и вывода формул используй SymPy, для быстрых численных расчётов - NumPy, для научных алгоритмов - SciPy, для больших таблиц экспериментов - Pandas.

Никогда не смешивай «магические числа» в коде - все параметры выноси в переменные. Работай в Jupyter или VS Code с ноутбуками, фиксируй версии библиотек и обязательно проверяй устойчивость решений через разные методы (например, интеграл численно и аналитически). Так код становится не просто расчётом, а научным инструментом.


import numpy as np
import sympy as sp
from scipy import integrate

# 1. Символьная математика
x = sp.symbols('x')
expr = sp.sin(x) / x
analytic_integral = sp.integrate(expr, (x, 1, 10))

# 2. Численная математика
f = lambda x: np.sin(x) / x
numeric_integral, error = integrate.quad(f, 1, 10)

# 3. Векторизация вместо циклов
arr = np.linspace(1, 10, 1_000_000)
fast_result = np.sin(arr) / arr

print("Analytic:", analytic_integral)
print("Numeric:", numeric_integral, "Error:", error)


@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
14🔥8👍6
⚡️ Хотите собрать своего личного JARVIS, но Clawdbot кажется слишком сложным для развёртывания и понимания?

Попробуйте - nanobot: ультралёгкая версия Clawdbot (на 99% проще), которая поднимает персонального AI-ассистента меньше чем за минуту.

⚡️ Базовый функционал всего в ~4 000 строк Python - против 400k+ строк у Clawdbot.

Ключевые особенности nanobot:

🪶 Ультралёгкий — ~4 000 строк кода, только ядро без перегруза.
🔬 Удобен для исследований — чистый, понятный код, легко менять и расширять.
⚡️ Быстрый — минимальный размер = быстрый старт, меньше ресурсов, быстрые итерации.
💎 Простой в использовании — один запуск, и ассистент уже работает.

Что умеет nanobot:

📈 24/7 анализ рынка в реальном времени — мониторинг и инсайты.
🚀 Full-stack софт-инженер — помощь в разработке от идеи до продакшена.
📅 Умный менеджер рутины — помогает организовать день и задачи.
📚 Персональный ассистент по знаниям — хранение, поиск и работа с информацией.

Если хочется своего AI-агента без монструозной инфраструктуры — это именно тот старт, который нужен.

🔗 Open Source: https://github.com/HKUDS/nanobot
🔗Video: https://www.youtube.com/shorts/Wx2RBCnl5nU

#Clawdbot #AIAssistant #Agents

@pythonl
9👍6🔥5
Команды Яндекса ищут продуктовых и data-аналитиков, а также data scientists с опытом на Python от 3 лет.

Участвуйте в Weekend Offer, чтобы всего за 2 дня пройти все собеседования и получить офер.

Как участвовать?
Зарегистрироваться на сайте до 25 февраля.
Пройти две технические секции 28 февраля.
Познакомиться с командами и получить офер 1 марта.

Мы опираемся на научные исследования и аналитические данные, а потом превращаем их в реальные продукты для миллионов пользователей. Присоединяйтесь, чтобы строить полезные сервисы вокруг ИИ-технологий, находить новые решения и делать то, что другим не по силам.

Подробности и регистрация — по ссылке: https://yandex.ru/project/events/wo-analytics-0226
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍5🔥3😁2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 С этим проектом, вы можете клонировать голоса, которые звучат по-настоящему живо.

Без робо-голоса. Без “синтетики”.
Полноценная, естественная человеческая речь.

Речь о модели на 1.7B параметров, заточенной под чистую и выразительную генерацию голоса.

Это уже не просто TTS.
Это высокоточное клонирование голоса с передачей интонаций, ритма и естественного звучания.

Разница между “голосом ИИ” и “голосом человека” стремительно исчезает.

Если ты работаешь с аудио, AI-ассистентами, агентами или медиа-инструментами - это серьёзно расширяет возможности.

Модель: https://huggingface.co/Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice
10🔥6👍5
🌟 Для тех, кто еще не использует ИИ в разработке.

Выдели 1 час и прокачай самый важный навык 2026 года - работу с LLM.

Большинство устали сейчас не от кода.

А от того, что мы пытаемся использовать ИИ “на ходу”, без понимания его возможности.

Это такой же навык, как и другие. Его нужно тренировать.

Вот простой старт:

Подготовка

1. Подключи Anthropic Pro ($20) с прицелом позже перейти на 5× Max
2. Установи Claude Code
3. Используй модель Opus 4.5 (она стоит по умолчанию)

Рабочий цикл

1. Включи режим планирования
2. Попроси модель спланировать одну маленькую фичу
3. Когда план тебя устраивает - включай авто-принятие правок
4. Если видишь, что модель “уезжает не туда” - сразу ставь на паузу
5. Очищай контекст и переходи к следующей фиче

И так по кругу.

Задача не в том, чтобы получить идеальный код.
Задача - нащупать границы модели:

- что она делает быстро и качественно
- где начинает придумывать
- какие задачи ей давать выгодно
- где проще и безопаснее сделать самому

Через 10-20 часов такой осознанной практики ИИ перестаёт быть “магией” и становится нормальным рабочим инструментом, который реально снимает нагрузку.

@pythonl
12🔥5👍4😢2