Python/ django
63.6K subscribers
2.26K photos
136 videos
48 files
3.01K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🚀 django-keel - мощный стартовый шаблон для Django-проектов

💡 Что это такое
Готовый современный каркас для Django-приложений, который позволяет запускать новый проект за минуты — с правильной архитектурой, CI, Docker и продуманной конфигурацией.

🔥 Что внутри
- Поддержка Python 3.12+ и Django 5.2+
- Несколько видов проектов: SaaS, API-backend, web-app, internal tools
- Docker + Docker Compose
- Настроенные линтеры, тесты, coverage и GitHub Actions
- 12-factor конфигурация, разделённые settings (dev/test/prod)
- Варианты API: DRF или GraphQL
- Поддержка фронта: Next.js или HTMX + Tailwind

🎯 Почему стоит использовать
- Экономит недели рутинной настройки
- Даёт единообразную и поддерживаемую архитектуру
- Ускоряет разработку MVP, внутренних сервисов и SaaS-продуктов

🛠 Быстрый старт

copier copy gh:CuriousLearner/django-keel my-project


Репозиторий: https://github.com/CuriousLearner/django-keel

@pythonl
9👍5🔥2
🚀 GigaChat Ultra & Lightning — новые MoE-модели от Сбера

💡 Что это такое
Две открытые модели нового поколения, обученные с нуля — без чужих весов. Созданы, чтобы ускорять разработку, уменьшать рутину и быть удобным напарником для разработчиков.

🔥 Что внутри
- Ultra: 702B параметров, контекст до 131k, стабильная работа экспертов
- Lightning: 10B параметров, контекст до 256k, лёгкая и быстрая
- Генерация нескольких токенов одновременно
- Экономия памяти, оптимизация KV-кеша
- Совместимость с Hugging Face, vLLM и SGLang

🎯 Почему стоит использовать
- Сбер снимает часть технических забот, чтобы сосредоточиться на экспериментах
- Ускоряет локальное прототипирование и работу с AI-помощниками
- Подходит для масштабных решений и небольших проектов

@pythonl
13👍5🔥5
🚀 myfy - модульный Python-фреймворк с фронтендом «из коробки»

Зачем он нужен: FastAPI - идеален для API, но без нормального фронта.

myfy берёт лучшее из FastAPI и добавляет полноценную модульность, DI и встроенный UI.

🔥 Главное
- Модульная архитектура с жизненным циклом (`start/stop`)
- Type-based DI без скрытой магии
- Фронтенд сразу из коробки:
Jinja2 + DaisyUI + Tailwind + Vite + HMR
Можно делать UI без React/Vue, идеально для внутренних тулов
- Чистая структура проекта, минимум бойлерплейта

🚀 Быстрый старт

pip install myfy
myfy init
myfy frontend init
myfy run


https://github.com/psincraian/myfy

@pythonl
14👍6🔥3😁2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 10 однострочных Python-функций, которые экономят время каждый день

Держи небольшой набор из 10 функций-однострочников, которые полезно просто закинуть в свой utils.py.
Они помогают быстро работать со списками, файлами, JSON, статистикой и частотами, без лишнего шума в коде.
Скопируй блок целиком и используй нужные функции по месту.


from pathlib import Path
from collections import Counter
import json, statistics as stats

chunks = lambda it, n: [it[i:i + n] for i in range(0, len(it), n)]

flatten = lambda lst: [x for sub in lst for x in sub]

unique = lambda seq: list(dict.fromkeys(seq))

sliding = lambda it, n: [it[i:i + n] for i in range(len(it) - n + 1)]

freqs = lambda seq: Counter(seq)

read_text = lambda p: Path(p).read_text(encoding="utf-8")

write_text = lambda p, text: Path(p).write_text(text, encoding="utf-8")

read_json = lambda p: json.loads(Path(p).read_text(encoding="utf-8"))

write_json = lambda p, obj: Path(p).write_text(json.dumps(obj, ensure_ascii=False, indent=2), encoding="utf-8")

mean_std = lambda xs: (stats.mean(xs), stats.pstdev(xs))


@pythonl
5👍4🔥2😁2