Python/ django
62.9K subscribers
2.33K photos
156 videos
48 files
3.07K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🚀 Lemonade SDK — локальный сервер для LLM с максимальной производительностью

Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.

Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.

Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`, /completions, /models, /load, /stats и др.).
- SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.

Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.

👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)

#LLM #AI #Lemonade #OpenSource #AMD

@pythonl
13👍9😁1🤩1
🤖 Красота! Теперь сделать собственного AI-агента стало проще простого

Достаточно выполнить:
> uv pip install mcp2py dspy

и буквально за 6 строк кода на Python вы получите ИИ-агента, который может искать и получать информацию через Google Chrome MCP DevTools.

💡 Самое интересное — вы всего в 1–2 шагах от того, чтобы подключить Gepa и автоматически оптимизировать промпты вашего агента.
То есть агент не просто отвечает, а постепенно учится улучшать свои результаты.

🚀 Минимум кода — максимум возможностей.
#Python #AI #dspy #MCP #PromptEngineering #Gepa

https://github.com/mainak55512/qwe

@pythonl
17👍6🔥4😢2
Forwarded from Machinelearning
📌 Андрей Карпаты написал ИИ-пайплайн для проверки IT-прогнозов десятилетней давности.

Андрей опубликовал разбор своего нового пет-проекта. Он создал систему, которая анализирует архивные треды Hacker News и с помощью LLM проверяет, сбылись ли предсказания пользователей спустя 10 лет.

Проект использует так называемые «послезнание» (hindsight), чтобы сравнивать старые комментарии с реальностью, выявлять визионеров и находить самые громкие ошибки.

Технически решение представляет собой пайплайн, который собирает данные через API Algolia и обрабатывает их с помощью структурированного промпта.

Тестовый прогон на 930 обсуждениях (месячный архив статей Hacker News) занял около часа и обошелся всего в 58 долларов.

На выходе система генерирует статический сайт с «Залом славы» аналитиков и рейтингом точность прогнозов.

Исходный вайб-код проекта, по традиции - в открытом доступе.


@ai_machinelearning_big_data

#AI #ML #LLM #Tutorial #Karpaty
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥3😢3👍1
Новая работа MIT: LLM, который видит и меняет состояние Python

В MIT предложили подход, при котором языковая модель работает не только с текстом, а напрямую с живым состоянием Python-кода - переменными, объектами в памяти и текущей точкой выполнения.

Подход называется NIGHTJAR.

Главный результат
В экспериментах NIGHTJAR сократил объем кода в среднем на 39.6% без потери корректности.

В чем была проблема
Обычная LLM:
- читает текст
- генерирует текст
- не видит реальные данные программы

Поэтому типичный пайплайн выглядит так:
- данные сериализуются в текст
- отправляются модели
- ответ парсится
- программа вручную обновляется

Много glue-кода, много мест для ошибок.

Что меняет совместное состояние
Shared state полностью меняет модель взаимодействия:
- LLM может читать и писать переменные
- изменять объекты прямо в памяти
- останавливать и пропускать циклы
- работать с текущим состоянием выполнения

Модель не «рассуждает о коде», она с ним взаимодействует.

Как это реализовано
LLM не получает прямой доступ к памяти.
Она отправляет небольшие команды:
- прочитать переменную
- записать значение
- обновить объект
- выйти из цикла

Python-обработчик выполняет эти команды.
Такой контракт авторы называют natural function interface.

Результаты
На бенчмарке SPSBench с 25 программами:
- корректность осталась на уровне ручной интеграции или выше
- код стал заметно короче
- но время выполнения иногда росло до 4.3 раза

Причина проста - каждое обращение к состоянию может требовать отдельного вызова модели.

Почему это важно
- меньше шаблонного glue-кода
- проще писать сложную логику с участием LLM
- шаг к более тесной интеграции AI и runtime
- фундамент для новых агентных и интерактивных систем

Это не про ускорение.
Это про изменение архитектуры взаимодействия между программой и моделью.

📌 Статья: arxiv.org/abs/2512.14805


#AI #LLM #Python
🔥185👍5
🧭 LLMRouter - умная маршрутизация запросов между LLM

UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:

не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее

Идея простая:
разные модели сильны в разном.

Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.

LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики

В итоге:
обычные вопросы идут в дешёвую модель
сложные reasoning-задачи - в сильную
код/инструменты - в специализированную
и всё это автоматически

Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.

Короче: это “load balancer” для LLM, но с мозгами.

GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps

@pythonl
👍189🔥7
Forwarded from Machinelearning
📌 Библиотека алгоритмов робототехники на Python.

PythonRobotics - открытая коллекция кода на Python и учебник по алгоритмам робототехники, которую собрал Ацуши Сакаи.

🟡В проекте есть все:

🟢Локализация (EKF, фильтры частиц, гистограммные фильтры);
🟢SLAM (FastSLAM, ICP-сопоставление);
🟢Планирование пути (A, RRT, Дейкстра, D*, потенциальные поля, решетка состояний);
🟢Отслеживание траекторий (контроллер Стэнли, LQR, MPC);
🟢Навигация для манипуляторов;
🟢БПЛА;
🟢Проектирование движения для двуногих роботов.

К каждой теме есть визуальные анимации, математические объяснения и рабочий код.

Библиотека не перегружена, ее легко читать и понимать, она содержит практические алгоритмы. которые реально используются в индустрии.

Это отличный образовательный ресурс с 2 212 коммитами, вкладом 138 разработчиков и активной поддержкой.

Если вы изучаете робототехнику, создаете автономные системы или преподаете алгоритмы — этот ресурс для вас.

У проекта лицензия MIT, так что можно свободно использовать его в личных или коммерческих проектах.

А еще, это отличный пример, как выглядит хороший опен-сорс: образовательный, практичный, хорошо документированный и развиваемый сообществом.


@ai_machinelearning_big_data

#AI #ML #Robotics #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍116