Data Science by ODS.ai 🦜
44.6K subscribers
827 photos
89 videos
7 files
1.89K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
DeepLearning ru:
Clockwork Convnets for Video Semantic Segmentation.

Adaptive video processing by incorporating data-driven clocks.

We define a novel family of "clockwork" convnets driven by fixed or adaptive clock signals that schedule the processing of different layers at different update rates according to their semantic stability. We design a pipeline schedule to reduce latency for real-time recognition and a fixed-rate schedule to reduce overall computation. Finally, we extend clockwork scheduling to adaptive video processing by incorporating data-driven clocks that can be tuned on unlabeled video.

https://arxiv.org/pdf/1608.03609v1.pdf
https://github.com/shelhamer/clockwork-fcn

http://www.gitxiv.com/posts/89zR7ATtd729JEJAg/clockwork-convnets-for-video-semantic-segmentation

#dl #CV #Caffe #video #Segmentation
There is a new $1MM competition on Kaggle to use ML / AI to diagnose lung cancer from CT scans.

Not only it is the great breakthrough for Kaggle (it is the first competition with this huge prize fund), it is also a breakthrough for science, since top world researchers and enginners will compete to basically crowdsource and ease the lung cancer diagnostics.

Competition is available at: https://www.kaggle.com/c/data-science-bowl-2017

#kaggle #segmentation #deeplearning #cv
ModaNet: A Large-Scale Street Fashion Dataset with Polygon Annotations

Latest segmentation and detection approaches (DeepLabV3+, FasterRCNN) applied to street fashion images. Arxiv paper contains information about both: net and dataset.

Arxiv link: https://arxiv.org/abs/1807.01394
Paperdoll dataset: http://vision.is.tohoku.ac.jp/~kyamagu/research/paperdoll/

#segmentation #dataset #fashion #sv