This media is not supported in your browser
VIEW IN TELEGRAM
HunyuanVideo от Тencent
Тencent выпустила HunyuanVideo, крупнейшую модель генерации видео с открытым исходным кодом!
13B модель имеет унифицированную архитектуру для создания как изображений, так и видео.
HunyuanVideo объединяет многомодальную большую языковую модель (MLLM) в качестве текстового кодировщика, улучшая текст-видео алайнмент и способности рассуждения. Она также использует 3D VAE для эффективного сжатия видеоданных, что позволяет генерировать высококачественное видео с исходным разрешением.
Согласно результатам профессиональной оценки, Hunyuan Video превосходит предыдущие передовые модели, включая Runway Gen-3, Luma 1.6 и 3 самые эффективные китайские модели видеогенерации.
👨💻 Project page
🤗 Huggingface
💻 Git
📜 Paper
🎮 Demo
Тencent выпустила HunyuanVideo, крупнейшую модель генерации видео с открытым исходным кодом!
13B модель имеет унифицированную архитектуру для создания как изображений, так и видео.
HunyuanVideo объединяет многомодальную большую языковую модель (MLLM) в качестве текстового кодировщика, улучшая текст-видео алайнмент и способности рассуждения. Она также использует 3D VAE для эффективного сжатия видеоданных, что позволяет генерировать высококачественное видео с исходным разрешением.
Согласно результатам профессиональной оценки, Hunyuan Video превосходит предыдущие передовые модели, включая Runway Gen-3, Luma 1.6 и 3 самые эффективные китайские модели видеогенерации.
💻 Git
📜 Paper
🎮 Demo
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯13🔥11❤1
🌪️ GenCast: Тихая AI Революция в Прогнозировании Погоды продолжается!
Команда Google DeepMind представила GenCast - новейшую AI-модель, которая предсказывает погоду с невероятной точностью на 15 дней вперед! 🎯
🤔 Почему это важно:
- Изменение климата делает погоду все более непредсказуемой
- Точные прогнозы спасают жизни и имущество людей
- Помогает планировать использование возобновляемой энергии
🔬 Что умеет GenCast:
- Создает 50+ возможных сценариев развития погоды и собирает их в вероятностный прогноз
- Работает с разрешением 0.25° по всей планете
- Превосходит лучшие существующие системы прогнозирования в 97.2% случаев!
⚡️ Впечатляющая скорость:
- Всего 8 минут на создание 15-дневного прогноза на одном Google Cloud TPU v5. Традиционным системам требуются часы работы на суперкомпьютерах!
🌪️ Особенно хорош в предсказании экстремальных погодных явлений:
- Тайфуны и ураганы
- Экстремальная жара и холод
- Сильные ветра
🎁 Открытый доступ:
Google DeepMind выпускает код модели и веса в открытый доступ, чтобы помочь развитию метеорологического сообщества.
🔮 Что дальше:
Скоро прогнозы GenCast появятся в Google Search и Maps, помогая предсказывать осадки, пожары, наводнения и экстремальную жару.
Это еще один шаг к более безопасному будущему, где мы сможем лучше подготовиться к капризам погоды! 🌍
📄 Статья в Nature
📰 Блог-пост
💻 Код
💿 Веса
Команда Google DeepMind представила GenCast - новейшую AI-модель, которая предсказывает погоду с невероятной точностью на 15 дней вперед! 🎯
🤔 Почему это важно:
- Изменение климата делает погоду все более непредсказуемой
- Точные прогнозы спасают жизни и имущество людей
- Помогает планировать использование возобновляемой энергии
🔬 Что умеет GenCast:
- Создает 50+ возможных сценариев развития погоды и собирает их в вероятностный прогноз
- Работает с разрешением 0.25° по всей планете
- Превосходит лучшие существующие системы прогнозирования в 97.2% случаев!
⚡️ Впечатляющая скорость:
- Всего 8 минут на создание 15-дневного прогноза на одном Google Cloud TPU v5. Традиционным системам требуются часы работы на суперкомпьютерах!
🌪️ Особенно хорош в предсказании экстремальных погодных явлений:
- Тайфуны и ураганы
- Экстремальная жара и холод
- Сильные ветра
🎁 Открытый доступ:
Google DeepMind выпускает код модели и веса в открытый доступ, чтобы помочь развитию метеорологического сообщества.
🔮 Что дальше:
Скоро прогнозы GenCast появятся в Google Search и Maps, помогая предсказывать осадки, пожары, наводнения и экстремальную жару.
Это еще один шаг к более безопасному будущему, где мы сможем лучше подготовиться к капризам погоды! 🌍
📄 Статья в Nature
📰 Блог-пост
💻 Код
💿 Веса
1🔥56👍7❤3🤩1😐1
AI для Всех
🌪️ GenCast: Тихая AI Революция в Прогнозировании Погоды продолжается! Команда Google DeepMind представила GenCast - новейшую AI-модель, которая предсказывает погоду с невероятной точностью на 15 дней вперед! 🎯 🤔 Почему это важно: - Изменение климата делает…
В продолжение нашего разговора о GenCast, давайте погрузимся в технические детали работы этой нейросети.
В сердце GenCast лежит сочетание двух подходов машинного обучения: диффузионных моделей и графовых трансформеров. В GenCast процесс предсказания погоды устроен как диффузия из шума -> через серию из 20 итераций очистки -> к реалистичному прогнозу погоды.
Архитектура GenCast построена из трех ключевых компонентов, каждый из которых решает специфическую задачу в процессе прогнозирования.
- Энкодер преобразует стандартную географическую сетку в икосаэдрическую структуру - специальный формат данных, оптимизированный для последующей обработки GenCast.
- Процессор, используя графовые трансформеры, анализирует взаимосвязи между погодными паттернами в глобальном масштабе.
- Декодер завершает процесс, конвертируя обработанные данные обратно в стандартный метеорологический формат.
Процесс обучения GenCast реализован в два этапа, что позволяет достичь оптимального баланса между скоростью и точностью. Первый этап включает 2 миллиона итераций на данных низкого разрешения (1°), где система осваивает базовые погодные паттерны. Второй этап добавляет 64,000 итераций на высоком разрешении (0.25°), что позволяет системе достичь необходимой точности прогнозирования.
Технически GenCast работает с комплексным набором переменных: 6 приземных (включая температуру и давление) и 6 атмосферных на 13 уровнях давления. Это позволяет системе создавать детальную трехмерную модель атмосферных процессов.
Важное преимущество GenCast - способность генерировать множество вероятных сценариев развития погоды, что особенно важно для прогнозирования экстремальных явлений.
В сердце GenCast лежит сочетание двух подходов машинного обучения: диффузионных моделей и графовых трансформеров. В GenCast процесс предсказания погоды устроен как диффузия из шума -> через серию из 20 итераций очистки -> к реалистичному прогнозу погоды.
Архитектура GenCast построена из трех ключевых компонентов, каждый из которых решает специфическую задачу в процессе прогнозирования.
- Энкодер преобразует стандартную географическую сетку в икосаэдрическую структуру - специальный формат данных, оптимизированный для последующей обработки GenCast.
- Процессор, используя графовые трансформеры, анализирует взаимосвязи между погодными паттернами в глобальном масштабе.
- Декодер завершает процесс, конвертируя обработанные данные обратно в стандартный метеорологический формат.
Процесс обучения GenCast реализован в два этапа, что позволяет достичь оптимального баланса между скоростью и точностью. Первый этап включает 2 миллиона итераций на данных низкого разрешения (1°), где система осваивает базовые погодные паттерны. Второй этап добавляет 64,000 итераций на высоком разрешении (0.25°), что позволяет системе достичь необходимой точности прогнозирования.
Технически GenCast работает с комплексным набором переменных: 6 приземных (включая температуру и давление) и 6 атмосферных на 13 уровнях давления. Это позволяет системе создавать детальную трехмерную модель атмосферных процессов.
Важное преимущество GenCast - способность генерировать множество вероятных сценариев развития погоды, что особенно важно для прогнозирования экстремальных явлений.
13🔥34❤3👍1🤩1
Y Combinator: почему вертикальные AI-агенты могут быть в 10 раз больше, чем SaaS
🌟 Рынок:
Искусственный интеллект (ИИ) меняет правила игры, как SaaS в 2000-х, но масштаб может быть еще больше. Каждый успешный SaaS-стартап может иметь аналог в виде вертикального AI-агента, который заменяет программное обеспечение и сотрудников.
🤖 Преимущества вертикального ИИ над SaaS:
- Экономия на ПО и затратах на персонал.
- Компании становятся более эффективными, требуя меньше людей.
- Технологии стремительно улучшаются каждые 3 месяца, и AI-агенты начинают заменять целые команды.
🚀 Как выйти на рынок:
- Продавать решения нужно не тем, кто потеряет работу из-за ИИ, а топ-менеджерам, заинтересованным в автоматизации.
- Сфокусируйтесь на скучной и повторяющейся административной работе — там скрыты миллиардные возможности.
📈 Истории успеха:
- MTic: Автоматизация тестирования QA.
- Cap.AI: Чатботы для разработчиков, уменьшившие потребность в крупных командах.
- Salient: Голосовые AI-решения для банков.
🔮 Будущее:
AI-инструменты помогут управлять крупными организациями и останутся специализированными, как SaaS.
🎞 Видео
🌟 Рынок:
Искусственный интеллект (ИИ) меняет правила игры, как SaaS в 2000-х, но масштаб может быть еще больше. Каждый успешный SaaS-стартап может иметь аналог в виде вертикального AI-агента, который заменяет программное обеспечение и сотрудников.
🤖 Преимущества вертикального ИИ над SaaS:
- Экономия на ПО и затратах на персонал.
- Компании становятся более эффективными, требуя меньше людей.
- Технологии стремительно улучшаются каждые 3 месяца, и AI-агенты начинают заменять целые команды.
🚀 Как выйти на рынок:
- Продавать решения нужно не тем, кто потеряет работу из-за ИИ, а топ-менеджерам, заинтересованным в автоматизации.
- Сфокусируйтесь на скучной и повторяющейся административной работе — там скрыты миллиардные возможности.
📈 Истории успеха:
- MTic: Автоматизация тестирования QA.
- Cap.AI: Чатботы для разработчиков, уменьшившие потребность в крупных командах.
- Salient: Голосовые AI-решения для банков.
🔮 Будущее:
AI-инструменты помогут управлять крупными организациями и останутся специализированными, как SaaS.
🎞 Видео
😐11🔥5❤2👍2
🧠 Test-Time Training
Исследователи из MIT представили инновационный метод Test-Time Training (TTT), который позволяет AI-моделям адаптироваться к конкретным задачам прямо во время работы! 🎯
🤔 Почему это важно:
- AI становится более гибким и точным
- Модель учится на лету, адаптируясь под каждую задачу
- Значительно повышает точность без увеличения размера модели
🔬 Что умеет TTT:
- Создает уникальный LoRA-адаптер для каждой задачи
- Улучшает точность до 6 раз по сравнению с обычными подходами (например few-shot learning)
- Достигает 53% точности на сложном бенчмарке ARC
- В комбинации с другими методами достигает уровня среднего человека (61.9%)!
⚡️ Основные преимущества:
- Не требует доступа к тестовым ответам
- Работает с существующими языковыми моделями
- Эффективно использует память благодаря LoRA
🎓 Как это работает:
- Создает временный адаптер для каждой задачи
- Обучается на примерах внутри задачи
- Использует умное голосование для выбора лучшего ответа
- После решения адаптер удаляется
🔮 Что дальше:
Метод открывает новые горизонты для AI-систем, способных адаптироваться к специфическим задачам в реальном времени. Это важный шаг к более гибкому и точному искусственному интеллекту! 🌍
📄 Статья
Исследователи из MIT представили инновационный метод Test-Time Training (TTT), который позволяет AI-моделям адаптироваться к конкретным задачам прямо во время работы! 🎯
🤔 Почему это важно:
- AI становится более гибким и точным
- Модель учится на лету, адаптируясь под каждую задачу
- Значительно повышает точность без увеличения размера модели
🔬 Что умеет TTT:
- Создает уникальный LoRA-адаптер для каждой задачи
- Улучшает точность до 6 раз по сравнению с обычными подходами (например few-shot learning)
- Достигает 53% точности на сложном бенчмарке ARC
- В комбинации с другими методами достигает уровня среднего человека (61.9%)!
⚡️ Основные преимущества:
- Не требует доступа к тестовым ответам
- Работает с существующими языковыми моделями
- Эффективно использует память благодаря LoRA
🎓 Как это работает:
- Создает временный адаптер для каждой задачи
- Обучается на примерах внутри задачи
- Использует умное голосование для выбора лучшего ответа
- После решения адаптер удаляется
🔮 Что дальше:
Метод открывает новые горизонты для AI-систем, способных адаптироваться к специфическим задачам в реальном времени. Это важный шаг к более гибкому и точному искусственному интеллекту! 🌍
📄 Статья
👍18
AI для Всех
🧠 Test-Time Training Исследователи из MIT представили инновационный метод Test-Time Training (TTT), который позволяет AI-моделям адаптироваться к конкретным задачам прямо во время работы! 🎯 🤔 Почему это важно: - AI становится более гибким и точным - Модель…
В продолжение разговора о Test-Time Training (TTT), давайте разберем технические детали этого подхода.
🔍 Архитектура TTT состоит из трех ключевых компонентов:
1. Генерация данных для обучения:
- Создает "leave-one-out" задачи из тренировочных примеров
- Применяет набор обратимых трансформаций (поворот, отражение, транспонирование)
- Формирует расширенный набор данных для каждой конкретной задачи
2. Процесс адаптации:
- Использует LoRA-адаптеры для эффективного файнтюнинга
- Rank = 128 обеспечивает баланс между гибкостью и эффективностью
- Применяется к query, value проекциям в self-attention, MLP и выходным слоям
- Обучение происходит за 2 эпохи с batch size = 2
3. Система голосования:
- Генерирует множество предсказаний через различные трансформации
- Использует двухуровневое голосование:
* Сначала внутри каждой трансформации
* Затем между лучшими кандидатами от разных трансформаций
📊 Процесс обучения реализован в два этапа:
1. Предварительный файнтюнинг базовой модели:
- Обучение на синтетических данных ARC
- Использование существующих генераторов задач
- Применение геометрических трансформаций для аугментации
2. Test-Time адаптация:
- Создание уникальной LoRA для каждой задачи
- Оптимизация на примерах конкретной задачи
- Использование AdamW оптимизатора с learning rate 5e-5
🔬 Технические результаты:
- На модели 8B параметров достигает 53% точности
- Улучшает базовую точность в 6 раз для 1B модели
- В ансамбле с program synthesis достигает 61.9%
⚙️ Ключевые технические особенности:
- Не требует доступа к тестовым ответам
- Временные адаптеры удаляются после использования
- Эффективное использование памяти благодаря LoRA
- Работает с существующими языковыми моделями
🤓 Интересные технические находки:
- Иерархическое голосование работает лучше плоского
- Геометрические трансформации критически важны для успеха
- LoRA per task эффективнее общего адаптера
- QLoRA показывает сравнимые результаты при меньшем потреблении памяти
Этот подход открывает новые возможности для адаптивного AI, способного настраиваться на конкретные задачи в реальном времени, сохраняя при этом вычислительную эффективность.
🔍 Архитектура TTT состоит из трех ключевых компонентов:
1. Генерация данных для обучения:
- Создает "leave-one-out" задачи из тренировочных примеров
- Применяет набор обратимых трансформаций (поворот, отражение, транспонирование)
- Формирует расширенный набор данных для каждой конкретной задачи
2. Процесс адаптации:
- Использует LoRA-адаптеры для эффективного файнтюнинга
- Rank = 128 обеспечивает баланс между гибкостью и эффективностью
- Применяется к query, value проекциям в self-attention, MLP и выходным слоям
- Обучение происходит за 2 эпохи с batch size = 2
3. Система голосования:
- Генерирует множество предсказаний через различные трансформации
- Использует двухуровневое голосование:
* Сначала внутри каждой трансформации
* Затем между лучшими кандидатами от разных трансформаций
📊 Процесс обучения реализован в два этапа:
1. Предварительный файнтюнинг базовой модели:
- Обучение на синтетических данных ARC
- Использование существующих генераторов задач
- Применение геометрических трансформаций для аугментации
2. Test-Time адаптация:
- Создание уникальной LoRA для каждой задачи
- Оптимизация на примерах конкретной задачи
- Использование AdamW оптимизатора с learning rate 5e-5
🔬 Технические результаты:
- На модели 8B параметров достигает 53% точности
- Улучшает базовую точность в 6 раз для 1B модели
- В ансамбле с program synthesis достигает 61.9%
⚙️ Ключевые технические особенности:
- Не требует доступа к тестовым ответам
- Временные адаптеры удаляются после использования
- Эффективное использование памяти благодаря LoRA
- Работает с существующими языковыми моделями
🤓 Интересные технические находки:
- Иерархическое голосование работает лучше плоского
- Геометрические трансформации критически важны для успеха
- LoRA per task эффективнее общего адаптера
- QLoRA показывает сравнимые результаты при меньшем потреблении памяти
Этот подход открывает новые возможности для адаптивного AI, способного настраиваться на конкретные задачи в реальном времени, сохраняя при этом вычислительную эффективность.
👍9🔥5❤1
🎮 Gemini Научили Играть в Настольные Игры!
Новое исследование от DeepMind показывает, как языковые модели могут освоить сложные настольные игры, используя методы планирования, похожие на человеческие! 🧠
🎯 Главное открытие:
Исследователи разработали два подхода к планированию ходов:
- Внешний поиск: модель запускает симуляции Monte Carlo
- Внутренний поиск: модель создает дерево возможных вариантов "в уме"
🏆 Впечатляющие результаты:
- Достигнут уровень гроссмейстера в шахматах
- При этом ИИ анализирует примерно столько же ходов, сколько человек-гроссмейстер!
- Успешно играет в другие игры: шахматы Фишера, "Четыре в ряд" и Hex
🔍 Особенности подхода:
- Минимум "галлюцинаций" - модель точно понимает правила
- Предварительное обучение на специальных данных
- Точное понимание корректных ходов и прогнозирование позиций
🌟 Почему это важно:
- ИИ учится мыслить более "по-человечески"
- Методы применимы не только к играм
- Открывает путь к более эффективному обучению языковых моделей
🔮 Перспективы:
Разработанные методы можно применять для улучшения языковых моделей в более широком спектре задач, где требуется планирование и рассуждение.
📄 Блог-пост
♟️ Поиграть в шахматы
Новое исследование от DeepMind показывает, как языковые модели могут освоить сложные настольные игры, используя методы планирования, похожие на человеческие! 🧠
🎯 Главное открытие:
Исследователи разработали два подхода к планированию ходов:
- Внешний поиск: модель запускает симуляции Monte Carlo
- Внутренний поиск: модель создает дерево возможных вариантов "в уме"
🏆 Впечатляющие результаты:
- Достигнут уровень гроссмейстера в шахматах
- При этом ИИ анализирует примерно столько же ходов, сколько человек-гроссмейстер!
- Успешно играет в другие игры: шахматы Фишера, "Четыре в ряд" и Hex
🔍 Особенности подхода:
- Минимум "галлюцинаций" - модель точно понимает правила
- Предварительное обучение на специальных данных
- Точное понимание корректных ходов и прогнозирование позиций
🌟 Почему это важно:
- ИИ учится мыслить более "по-человечески"
- Методы применимы не только к играм
- Открывает путь к более эффективному обучению языковых моделей
🔮 Перспективы:
Разработанные методы можно применять для улучшения языковых моделей в более широком спектре задач, где требуется планирование и рассуждение.
📄 Блог-пост
♟️ Поиграть в шахматы
🔥14😐1
AI для Всех
🎮 Gemini Научили Играть в Настольные Игры! Новое исследование от DeepMind показывает, как языковые модели могут освоить сложные настольные игры, используя методы планирования, похожие на человеческие! 🧠 🎯 Главное открытие: Исследователи разработали два подхода…
В продолжение нашего разговора о языковых моделях для игр, давайте рассмотрим что именно было сделано.
Фундаментом системы является MAV (Multi-Action-Value) специализированная языковая модель, обученная на десятилетиях игровых данных. MAV может одновременно выполнять несколько важных функций:
- отслеживать состояние игры
- оценивать позиции и
- генерировать возможные ходы.
При этом модель демонстрирует крайне низкий уровень галлюцинаций - практически 100% точность в определении корректных ходов и предсказании следующих позиций.
На базе этой модели были реализованы два подхода к планированию:
1. Внешний поиск (external search) использует MAV для управления Monte Carlo Tree Search (MCTS) без обращения к внешним игровым движкам. Модель направляет процесс построения дерева поиска и оценки позиций, опираясь на свои внутренние знания об игре. При использовании всего 100-1000 симуляций (у традиционных движков десятки тысяч) система достигает уровня гроссмейстера.
2. Внутренний поиск (internal search) позволяет модели генерировать и анализировать дерево вариантов прямо в контексте запроса. MAV напрямую строит линеаризованное дерево возможных продолжений и выбирает оптимальный ход. Чем больше токенов выделяется на поиск, тем сильнее играет система.
Результаты впечатляют: система превосходит современные движки в 97.2% тестовых позиций. Особенно важно, что эти подходы не ограничены шахматами - те же принципы можно применять для улучшения рассуждений языковых моделей в других областях, где требуется анализ вариантов и планирование.
Это исследование открывает новую главу в применении языковых моделей, демонстрируя, как объединение современных методов машинного обучения с классическими алгоритмами поиска может привести к качественному скачку в решении сложных задач планирования и рассуждения.
Статья
Фундаментом системы является MAV (Multi-Action-Value) специализированная языковая модель, обученная на десятилетиях игровых данных. MAV может одновременно выполнять несколько важных функций:
- отслеживать состояние игры
- оценивать позиции и
- генерировать возможные ходы.
При этом модель демонстрирует крайне низкий уровень галлюцинаций - практически 100% точность в определении корректных ходов и предсказании следующих позиций.
На базе этой модели были реализованы два подхода к планированию:
1. Внешний поиск (external search) использует MAV для управления Monte Carlo Tree Search (MCTS) без обращения к внешним игровым движкам. Модель направляет процесс построения дерева поиска и оценки позиций, опираясь на свои внутренние знания об игре. При использовании всего 100-1000 симуляций (у традиционных движков десятки тысяч) система достигает уровня гроссмейстера.
2. Внутренний поиск (internal search) позволяет модели генерировать и анализировать дерево вариантов прямо в контексте запроса. MAV напрямую строит линеаризованное дерево возможных продолжений и выбирает оптимальный ход. Чем больше токенов выделяется на поиск, тем сильнее играет система.
Результаты впечатляют: система превосходит современные движки в 97.2% тестовых позиций. Особенно важно, что эти подходы не ограничены шахматами - те же принципы можно применять для улучшения рассуждений языковых моделей в других областях, где требуется анализ вариантов и планирование.
Это исследование открывает новую главу в применении языковых моделей, демонстрируя, как объединение современных методов машинного обучения с классическими алгоритмами поиска может привести к качественному скачку в решении сложных задач планирования и рассуждения.
Статья
🔥11❤4🤯1🎉1
AMA: Ask me anything
Давно мы не беседовали! Я Артемий - автор и создатель этого канала. В следующие 24 часа готов отвечать на вопросы.
Пишите в комменты к этому посту🥦
Давно мы не беседовали! Я Артемий - автор и создатель этого канала. В следующие 24 часа готов отвечать на вопросы.
Пишите в комменты к этому посту
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15👍5🔥3🤯2
🌟 Открыт набор задач для Международной олимпиады школьников по искусственному интеллекту (IOAI 2025)!
Если вы:
- Работаете в сфере ML/AI
- Имеете интересные идеи для олимпиадных задач
- Хотите внести вклад в развитие будущих AI-исследователей
То у вас есть уникальная возможность стать частью этого масштабного образовательного проекта!
🎯 Авторы лучших задач получат приглашение посетить олимпиаду в Китае летом 2025 года.
⏰ Дедлайн подачи задач: 31 января 2025 года
Ваши задачи помогут вдохновить и подготовить новое поколение AI-исследователей. Это шанс войти в историю развития AI-образования!
Подробная информация и помощь по всем вопросам доступны по ссылке. Присоединяйтесь! 🚀
Если вы:
- Работаете в сфере ML/AI
- Имеете интересные идеи для олимпиадных задач
- Хотите внести вклад в развитие будущих AI-исследователей
То у вас есть уникальная возможность стать частью этого масштабного образовательного проекта!
🎯 Авторы лучших задач получат приглашение посетить олимпиаду в Китае летом 2025 года.
⏰ Дедлайн подачи задач: 31 января 2025 года
Ваши задачи помогут вдохновить и подготовить новое поколение AI-исследователей. Это шанс войти в историю развития AI-образования!
Подробная информация и помощь по всем вопросам доступны по ссылке. Присоединяйтесь! 🚀
❤5👍1🔥1
AI для Всех
*singing* On the first day of Christmas, Sama gave to me: O1 pro and 200 bucks for ChatGPT Source
🎵 On the third day of Christmas, Sam Altman gave to me:
Generations with Sora,
O(1) fine-tuning,
And two hundred bucks for ChatGPT! 🎶
Generations with Sora,
O(1) fine-tuning,
And two hundred bucks for ChatGPT! 🎶
🔥6❤2🤩1
AI для Всех
🎵 On the third day of Christmas, Sam Altman gave to me: Generations with Sora, O(1) fine-tuning, And two hundred bucks for ChatGPT! 🎶
Сделал свое первое видео с Sora
Генерация 2х вариаций 5 секундного ролика заняла 4 минуты (полагаю что из-за очереди, но в явном видео это нигде не указано).
Мой запрос (я просил Сэма Алтмана поющего рождественские хоралы) был отредактирован в соответствии с политикой контента OpenAI.
Ролики прикладываю в комментарии.
Очевидно что это сора это навык, и еще более очевидно, что за следующий месяц мы насмотримся абсолютно безумных, невероятных и крайне неожиданных результатов.
Генерация 2х вариаций 5 секундного ролика заняла 4 минуты (полагаю что из-за очереди, но в явном видео это нигде не указано).
Мой запрос (я просил Сэма Алтмана поющего рождественские хоралы) был отредактирован в соответствии с политикой контента OpenAI.
Ролики прикладываю в комментарии.
Очевидно что это сора это навык, и еще более очевидно, что за следующий месяц мы насмотримся абсолютно безумных, невероятных и крайне неожиданных результатов.
🔥10😱5👍1
AI для Всех
Сделал свое первое видео с Sora Генерация 2х вариаций 5 секундного ролика заняла 4 минуты (полагаю что из-за очереди, но в явном видео это нигде не указано). Мой запрос (я просил Сэма Алтмана поющего рождественские хоралы) был отредактирован в соответствии…
Количество видео регулируется некими кредитами, которые видимо будут обнуляться каждый месяц.
2 вариации 5s 420p - 50 кредитов
Кстати, работает все это через Stripe =)
2 вариации 5s 420p - 50 кредитов
Кстати, работает все это через Stripe =)
❤2👍2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Тем временем, на секундочку, вернемся к настоящим видосам.
Оптимус вышел на прогулку рядом с офисом Tesla в Пало Альто.
Оптимус вышел на прогулку рядом с офисом Tesla в Пало Альто.
🔥9❤5😁4👍2
Deep Research
Google выкатил интересное обновление Gemini, про которое напишу вообще все, а я же хочу сосредоточиться на том, что теперь ассистент умеет сам проводить исследования в интернете.
Выглядит это так:
Вы просите его разобраться в какой-то теме, например "как сейчас развивается рынок беспилотных автомобилей". Gemini составляет план поиска, показывает его вам на проверку, а потом начинает самостоятельно искать информацию в сети.
Он не просто собирает первые попавшиеся ссылки, а действует как настоящий исследователь - находит что-то интересное, копает глубже на основе найденного, проверяет разные источники. В итоге выдает структурированный отчет со всеми ссылками, который можно сразу выгрузить в Google Docs.
Представьте: вместо того чтобы часами сидеть с десятком открытых вкладок, делая пометки и пытаясь не утонуть в информации, вы получаете готовый обзор за несколько минут. При этом можете его обсудить с ассистентом и попросить что-то уточнить или переделать.
Пока Deep Research (так называется эта функция) доступен только в платной версии Gemini Advanced и работает на десктопе. В мобильное приложение обещают добавить в начале 2025 года.
А еще Google выпустил экспериментальную версию новой модели - Gemini 2.0 Flash. Она работает быстрее и умнее, но пока находится в режиме тестирования. Попробовать можно уже сейчас - просто выберите ее в выпадающем меню моделей.
И вот, мы стали еще на шажок ближе к тому моменту, когда ИИ-ассистенты действительно начнут освобождать нас от рутинной работы, а не просто отвечать на вопросы 😊
Блог-пост
Google выкатил интересное обновление Gemini, про которое напишу вообще все, а я же хочу сосредоточиться на том, что теперь ассистент умеет сам проводить исследования в интернете.
Выглядит это так:
Вы просите его разобраться в какой-то теме, например "как сейчас развивается рынок беспилотных автомобилей". Gemini составляет план поиска, показывает его вам на проверку, а потом начинает самостоятельно искать информацию в сети.
Он не просто собирает первые попавшиеся ссылки, а действует как настоящий исследователь - находит что-то интересное, копает глубже на основе найденного, проверяет разные источники. В итоге выдает структурированный отчет со всеми ссылками, который можно сразу выгрузить в Google Docs.
Представьте: вместо того чтобы часами сидеть с десятком открытых вкладок, делая пометки и пытаясь не утонуть в информации, вы получаете готовый обзор за несколько минут. При этом можете его обсудить с ассистентом и попросить что-то уточнить или переделать.
Пока Deep Research (так называется эта функция) доступен только в платной версии Gemini Advanced и работает на десктопе. В мобильное приложение обещают добавить в начале 2025 года.
А еще Google выпустил экспериментальную версию новой модели - Gemini 2.0 Flash. Она работает быстрее и умнее, но пока находится в режиме тестирования. Попробовать можно уже сейчас - просто выберите ее в выпадающем меню моделей.
И вот, мы стали еще на шажок ближе к тому моменту, когда ИИ-ассистенты действительно начнут освобождать нас от рутинной работы, а не просто отвечать на вопросы 😊
Блог-пост
🔥32👍15❤3
Антропик показали, как ИИ может анализировать сам себя 🔍🤖
Друзья, сегодня расскажу про крутейшее исследование от компании Anthropic - они создали систему Clio, которая позволяет безопасно анализировать миллионы разговоров с ИИ-ассистентом Claude.
В чём суть? 🎯
- Clio использует сам ИИ для анализа паттернов использования ИИ-ассистентов
- Система сохраняет приватность пользователей, работая только с обобщёнными данными
- Позволяет увидеть реальные сценарии применения ИИ в повседневной жизни
Что интересного обнаружили? 📊
- Самые популярные задачи: программирование, создание контента и исследования
- Пользователи из разных стран используют ИИ по-разному (например, в Японии больше обсуждают проблемы старения населения)
- Выявили новые способы злоупотребления системой, что помогло усилить защиту
Почему это важно? 💡
1. Впервые получили реальную картину использования ИИ в масштабе миллионов разговоров
2. Нашли баланс между аналитикой и приватностью
3. Создали основу для более безопасного развития ИИ-ассистентов
Технология работает как Google Trends, но для разговоров с ИИ - показывает тренды, паттерны и аномалии, не раскрывая личных данных пользователей.
Это прорыв в понимании того, как люди реально взаимодействуют с ИИ. И что особенно круто - система использует ИИ для анализа ИИ, что открывает новые горизонты в развитии безопасных и этичных технологий.
Судя по результатам анализа, мы в пузыре? В тоже время, Клодом пользуются в основном айтишники, так что может не так все и плохо 🤔
Блог-пост
Статья
Друзья, сегодня расскажу про крутейшее исследование от компании Anthropic - они создали систему Clio, которая позволяет безопасно анализировать миллионы разговоров с ИИ-ассистентом Claude.
В чём суть? 🎯
- Clio использует сам ИИ для анализа паттернов использования ИИ-ассистентов
- Система сохраняет приватность пользователей, работая только с обобщёнными данными
- Позволяет увидеть реальные сценарии применения ИИ в повседневной жизни
Что интересного обнаружили? 📊
- Самые популярные задачи: программирование, создание контента и исследования
- Пользователи из разных стран используют ИИ по-разному (например, в Японии больше обсуждают проблемы старения населения)
- Выявили новые способы злоупотребления системой, что помогло усилить защиту
Почему это важно? 💡
1. Впервые получили реальную картину использования ИИ в масштабе миллионов разговоров
2. Нашли баланс между аналитикой и приватностью
3. Создали основу для более безопасного развития ИИ-ассистентов
Технология работает как Google Trends, но для разговоров с ИИ - показывает тренды, паттерны и аномалии, не раскрывая личных данных пользователей.
Это прорыв в понимании того, как люди реально взаимодействуют с ИИ. И что особенно круто - система использует ИИ для анализа ИИ, что открывает новые горизонты в развитии безопасных и этичных технологий.
Судя по результатам анализа, мы в пузыре? В тоже время, Клодом пользуются в основном айтишники, так что может не так все и плохо 🤔
Блог-пост
Статья
👍19🔥14❤1
AI для Всех
Антропик показали, как ИИ может анализировать сам себя 🔍🤖 Друзья, сегодня расскажу про крутейшее исследование от компании Anthropic - они создали систему Clio, которая позволяет безопасно анализировать миллионы разговоров с ИИ-ассистентом Claude. В чём суть?…
В продолжение разговора о метаанализе ИИ-систем, давайте разберемся в Clio подробнее.
Фундаментом системы является многоуровневый пайплайн обработки данных с несколькими ключевыми компонентами:
Извлечение характеристик
- Система использует специализированные языковые модели для анализа каждого диалога
- Извлекает множество параметров: язык общения, тему, намерения пользователя
- Работает как с прямыми метриками (длина диалога), так и с семантическим анализом
Умная кластеризация
- Применяет embedding-based clustering для группировки похожих диалогов
- Использует k-means с динамическим определением оптимального числа кластеров
- Строит иерархическую структуру паттернов использования
Защита приватности
- Многоуровневая фильтрация персональных данных
- Агрегация информации только при достаточном количестве похожих случаев
- Автоматическая проверка на отсутствие идентифицирующей информации
Результаты
- Система выявила основные сценарии использования ИИ (программирование, создание контента, исследования)
- Обнаружила культурные различия в применении ИИ
- Помогла выявить и предотвратить попытки злоупотребления системой
Особенно важно, что Clio демонстрирует новый подход к анализу ИИ-систем, где сам искусственный интеллект используется для понимания паттернов своего применения.
Исследование знаменует важный шаг в развитии прозрачных и этичных методов анализа ИИ-систем, объединяя передовые технологии машинного обучения с принципами защиты приватности.
Статья
Фундаментом системы является многоуровневый пайплайн обработки данных с несколькими ключевыми компонентами:
Извлечение характеристик
- Система использует специализированные языковые модели для анализа каждого диалога
- Извлекает множество параметров: язык общения, тему, намерения пользователя
- Работает как с прямыми метриками (длина диалога), так и с семантическим анализом
Умная кластеризация
- Применяет embedding-based clustering для группировки похожих диалогов
- Использует k-means с динамическим определением оптимального числа кластеров
- Строит иерархическую структуру паттернов использования
Защита приватности
- Многоуровневая фильтрация персональных данных
- Агрегация информации только при достаточном количестве похожих случаев
- Автоматическая проверка на отсутствие идентифицирующей информации
Результаты
- Система выявила основные сценарии использования ИИ (программирование, создание контента, исследования)
- Обнаружила культурные различия в применении ИИ
- Помогла выявить и предотвратить попытки злоупотребления системой
Особенно важно, что Clio демонстрирует новый подход к анализу ИИ-систем, где сам искусственный интеллект используется для понимания паттернов своего применения.
Исследование знаменует важный шаг в развитии прозрачных и этичных методов анализа ИИ-систем, объединяя передовые технологии машинного обучения с принципами защиты приватности.
Статья
1🔥5👍3❤2🤩2😐1