👺 txt2mask
это надстройка для веб-интерфейса AUTOMATIC1111, в основе которой лежит Stable Diffusion. txt2mask позволяет вам вводить текст в режиме img2img и автоматически генерировать маску изображения.
⚙️ Github
➡️ Stable Diffusion
@machinelearning_ru
это надстройка для веб-интерфейса AUTOMATIC1111, в основе которой лежит Stable Diffusion. txt2mask позволяет вам вводить текст в режиме img2img и автоматически генерировать маску изображения.
⚙️ Github
➡️ Stable Diffusion
@machinelearning_ru
👍7❤2🔥2
💊 Medical Open Network for AI
MONAI — это основанная на PyTorch библиотека глубокого обучения с открытым исходным кодом для визуализации мед данных, входящая в экосистему PyTorch.
⚙️ Code
🗒 Docs
@machinelearning_ru
MONAI — это основанная на PyTorch библиотека глубокого обучения с открытым исходным кодом для визуализации мед данных, входящая в экосистему PyTorch.
pip install monai⚙️ Code
🗒 Docs
@machinelearning_ru
👍11🔥2❤1
CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement
мы предлагаем основанную на конформере метрическую генеративную состязательную сеть (CMGAN) для SE в частотно-временной (TF) области.
⚙️ Github
🗒 Статья
💻 Demo
@machinelearning_ru
мы предлагаем основанную на конформере метрическую генеративную состязательную сеть (CMGAN) для SE в частотно-временной (TF) области.
⚙️ Github
🗒 Статья
💻 Demo
@machinelearning_ru
👍8❤2🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
⚜️ Руководство по созданию интерактивных визуализаций на Python
Визуализация данных — один из важнейших этапов проекта в области науки о данных и аналитики данных. Она помогает как изучать и понимать данные, так и эффективно обмениваться результатами.
Самыми распространенными библиотеками для создания визуализаций на Python являются Matplotlib и Seaborn, но существует и множество других инструментов.
В этом руководстве мы изучим инструменты HoloViz, а точнее Panel и hvPlot — библиотеки с открытым исходным кодом, которые используются для создания интерактивных диаграмм и контрольных панелей. Также узнаем, как легко развернуть и поделиться контрольной панелью с помощью Jupyter Notebook.
В этом проекте мы будем использовать данные о различных покемонах, доступные на Kaggle и Wikipedia, а также данные о продажах игр про покемонов.
Краткий обзор
Мы выполним следующие задачи.
Создадим простой интерактивный график, используя hvPlot и Pandas.
Построим более сложные визуализации, используя Panel для создания виджетов, которые будут фильтровать данные, и hvPlot для отображения этих данных.
Создадим контрольную панель, показывающую табличные данные, информацию о проекте, а также различные интерактивные диаграммы.
Узнаем, как развертывать контрольную панель на Heroku, чтобы проектом можно было делиться.
➡️ Читать дальше
⚙️ Код
@machinelearning_ru
Визуализация данных — один из важнейших этапов проекта в области науки о данных и аналитики данных. Она помогает как изучать и понимать данные, так и эффективно обмениваться результатами.
Самыми распространенными библиотеками для создания визуализаций на Python являются Matplotlib и Seaborn, но существует и множество других инструментов.
В этом руководстве мы изучим инструменты HoloViz, а точнее Panel и hvPlot — библиотеки с открытым исходным кодом, которые используются для создания интерактивных диаграмм и контрольных панелей. Также узнаем, как легко развернуть и поделиться контрольной панелью с помощью Jupyter Notebook.
В этом проекте мы будем использовать данные о различных покемонах, доступные на Kaggle и Wikipedia, а также данные о продажах игр про покемонов.
Краткий обзор
Мы выполним следующие задачи.
Создадим простой интерактивный график, используя hvPlot и Pandas.
Построим более сложные визуализации, используя Panel для создания виджетов, которые будут фильтровать данные, и hvPlot для отображения этих данных.
Создадим контрольную панель, показывающую табличные данные, информацию о проекте, а также различные интерактивные диаграммы.
Узнаем, как развертывать контрольную панель на Heroku, чтобы проектом можно было делиться.
➡️ Читать дальше
⚙️ Код
@machinelearning_ru
👍8🔥3🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
👱♂️ Редактор 3D лиц в онлайн
C данным алгоритмом можно легко и просто сгенерить на основе GAN лицо и отредактировать его в 3D.
Исследователи из Tencent AI Lab, ByteDance и Университета Цинхуа представили IDE-3D, новую генеративную модель для рисования лица в режиме свободного просмотра, редактирования и управления стилем. Система, работающая на базе GAN, обеспечивает локальное управление формой и текстурой лица, а также интерактивное редактирование в режиме онлайн.
Тем, кто следит за нашими постами, очевидно, что совместили сразу несколько GAN нейросетей, добавив визуальный редактор.
Установка
➡️ Проект
⚙️ Код
🗒 Статья
@machinelearning_ru
C данным алгоритмом можно легко и просто сгенерить на основе GAN лицо и отредактировать его в 3D.
Исследователи из Tencent AI Lab, ByteDance и Университета Цинхуа представили IDE-3D, новую генеративную модель для рисования лица в режиме свободного просмотра, редактирования и управления стилем. Система, работающая на базе GAN, обеспечивает локальное управление формой и текстурой лица, а также интерактивное редактирование в режиме онлайн.
Тем, кто следит за нашими постами, очевидно, что совместили сразу несколько GAN нейросетей, добавив визуальный редактор.
Установка
git clone --recursive https://github.com/MrTornado24/IDE-3D.git
cd IDE-3D
conda env create -f environment.yml➡️ Проект
⚙️ Код
🗒 Статья
@machinelearning_ru
👍9❤4🔥2
📌 MGAD-multimodal-guided-artwork-diffusion
Алгоритм создания цифровых иллюстраций на основе диффузии, который использует мультимодальные подсказки в качестве руководства для управления моделью.
⚙️ Код
🗒 Статья
@machinelearning_ru
Алгоритм создания цифровых иллюстраций на основе диффузии, который использует мультимодальные подсказки в качестве руководства для управления моделью.
git clone https://github.com/openai/CLIP
pip install -e ./CLIP
pip install -e ./guided-diffusion
pip install lpips
⚙️ Код
🗒 Статья
@machinelearning_ru
👍5🔥2❤1
📎 TVLT: Textless Vision-Language Transformer
⚙️ Код
🗒 Статья
Colab
➡️ Dataset
@machinelearning_ru
conda create -n TVLT python=3.8 # You can also use other environment.⚙️ Код
🗒 Статья
Colab
➡️ Dataset
@machinelearning_ru
👍5❤1🔥1
✔️ 6 алгоритмов машинного обучения, которые должен знать каждый исследователь данных
Алгоритмы машинного обучения делятся на контролируемые и неконтролируемые.
Алгоритмы контролируемого обучения моделируют отношения между помеченными входными и выходными данными (также известными как целевые данные). Впоследствии такая модель используется для предсказания метки новых наблюдений с помощью новых помеченных входных данных. Если целевая переменная дискретная, алгоритм решает задачи классификации, а если целевая переменная непрерывная — алгоритм используется для задач регрессии.
В отличие от контролируемого, неконтролируемое обучение не опирается на помеченные входные/выходные данные, а обрабатывает непомеченные данные.
➡️ Читать дальше
@machinelearning_ru
Алгоритмы машинного обучения делятся на контролируемые и неконтролируемые.
Алгоритмы контролируемого обучения моделируют отношения между помеченными входными и выходными данными (также известными как целевые данные). Впоследствии такая модель используется для предсказания метки новых наблюдений с помощью новых помеченных входных данных. Если целевая переменная дискретная, алгоритм решает задачи классификации, а если целевая переменная непрерывная — алгоритм используется для задач регрессии.
В отличие от контролируемого, неконтролируемое обучение не опирается на помеченные входные/выходные данные, а обрабатывает непомеченные данные.
➡️ Читать дальше
@machinelearning_ru
👍8❤1🔥1
🎓 Stanford CS25 бесплатный курс по Трансформерам
✔️ Курс: https://web.stanford.edu/class/cs25/
➡️ Лекции: https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM
@machinelearning_ru
✔️ Курс: https://web.stanford.edu/class/cs25/
➡️ Лекции: https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM
@machinelearning_ru
👍7❤1🔥1
🔋 Denoising of 3D MR images using a voxel-wise hybrid residual MLP-CNN model to improve small lesion diagnostic confidence
⚙️ Код
🗒 Статья
➡️ Dataset
@machinelearning_ru
⚙️ Код
🗒 Статья
➡️ Dataset
@machinelearning_ru
👍5🥰2🔥1
Как масштабировать многопроцессорность Python до кластера с помощью одной строчки кода
Программы начинаются с малого. Будь то исследовательский анализ данных или построение модели машинного обучения, важно как можно быстрее заставить что-то простое работать. Однако со временем требования меняются, и некогда небольшие программы необходимо масштабировать, чтобы обрабатывать больше данных или использовать больше вычислительных ресурсов. К сожалению, изменение программы для масштабирования на несколько ядер или нескольких машин часто требует переписывания ее с нуля, не говоря уже о решении множества сложностей, связанных с параллелизмом и распределенными системами.
Многопроцессорность Python предлагает одно решение этой проблемы, предоставляя набор удобных API-интерфейсов, которые позволяют программам Python использовать преимущества нескольких ядер на одной машине. Однако, хотя это может помочь масштабировать приложение в 10 или даже 50 раз, оно все же ограничено параллелизмом одной машины, и выход за рамки этого потребует переосмысления и переписывания приложения.
В этом сообщении в блоге я расскажу, как можно преодолеть это ограничение, беспрепятственно масштабируясь до многоузлового кластера с помощью ray.util.multiprocessing.Pool API, выпущенного вместе с Ray - без переписывания своей программы!
➡️ Читать дальше
@machinelearning_ru
Программы начинаются с малого. Будь то исследовательский анализ данных или построение модели машинного обучения, важно как можно быстрее заставить что-то простое работать. Однако со временем требования меняются, и некогда небольшие программы необходимо масштабировать, чтобы обрабатывать больше данных или использовать больше вычислительных ресурсов. К сожалению, изменение программы для масштабирования на несколько ядер или нескольких машин часто требует переписывания ее с нуля, не говоря уже о решении множества сложностей, связанных с параллелизмом и распределенными системами.
Многопроцессорность Python предлагает одно решение этой проблемы, предоставляя набор удобных API-интерфейсов, которые позволяют программам Python использовать преимущества нескольких ядер на одной машине. Однако, хотя это может помочь масштабировать приложение в 10 или даже 50 раз, оно все же ограничено параллелизмом одной машины, и выход за рамки этого потребует переосмысления и переписывания приложения.
В этом сообщении в блоге я расскажу, как можно преодолеть это ограничение, беспрепятственно масштабируясь до многоузлового кластера с помощью ray.util.multiprocessing.Pool API, выпущенного вместе с Ray - без переписывания своей программы!
➡️ Читать дальше
@machinelearning_ru
👍8❤3🔥1
Предлагаем рассмотреть несколько алгоритмов поиска выбросов, проведём первичное сравнение на различных датасетах и определим несколько наиболее оптимальных из них.
Выбросы (или аномалии) в статистике — результаты измерения, выделяющиеся из общей выборки. Обнаружение выбросов важно во многих областях и процессах. В электронике поиск выбросов может помочь при обнаружении неисправных устройств. В банковских операциях поиск выбросов может помочь при обнаружении нетипичных для клиента операций. Давайте рассмотрим, как можно решить задачу поиска выбросов с помощью языка Python и библиотеки PyOD.
Библиотека PyOD включает в себя более 40 алгоритмов обнаружения выбросов, от классических LOF, PCA и kNN до новейших ROD, SUOD и ECOD.
Более подробно ознакомиться со всеми алгоритмами и наборами данных можно по ссылке https://github.com/newtechaudit/pyod.
Давайте сравним скорость и точность нескольких реализованных в этой библиотеке алгоритмов. Возьмём на тестирование 10 алгоритмов из различных категорий.
➡️ Читать дальше
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥2
Google's AI: Stable Diffusion On Steroids! 💪
Google AI представил новый вариант stable diffusion, с возможностью редактировать изначально сгенерированное изображение через изменения описаний. Теперь, если первое изображение вас устраивает только частично, можно вносить коррективы и не беспокоиться, что какое-нибудь красивое дерево с пейзажа убежит, когда вы редактируете животное на переднем планет.
🎞 Разбор статьи
🗒 Статья
⚙️ Код
@machinelearning_ru
Google AI представил новый вариант stable diffusion, с возможностью редактировать изначально сгенерированное изображение через изменения описаний. Теперь, если первое изображение вас устраивает только частично, можно вносить коррективы и не беспокоиться, что какое-нибудь красивое дерево с пейзажа убежит, когда вы редактируете животное на переднем планет.
🎞 Разбор статьи
🗒 Статья
⚙️ Код
@machinelearning_ru
YouTube
Google's AI: Stable Diffusion On Steroids! 💪
❤️ Check out Weights & Biases and sign up for a free demo here: https://wandb.com/papers
❤️ Their mentioned post is available here: http://wandb.me/prompt2prompt
📝 The paper "Prompt-to-Prompt Image Editing with Cross Attention Control" is available here:…
❤️ Their mentioned post is available here: http://wandb.me/prompt2prompt
📝 The paper "Prompt-to-Prompt Image Editing with Cross Attention Control" is available here:…
👍6🔥3❤1👏1
Сейчас типичная исследовательская статья по МО выглядит примерно так:
ПРЕДЛАГАЕМ НОВУЮ АРХИТЕКТУРУ МОДЕЛИ X. КАК ВЫЯСНИЛОСЬ, X ПРЕВОСХОДИТ SOTA (SELF-ORGANISING TREE ALGORITHM, САМООРГАНИЗУЮЩИЙСЯ ДРЕВОВИДНЫЙ АЛГОРИТМ) НА Y%. ТАКИМ ОБРАЗОМ, X ЛУЧШЕ, ЧЕМ ТЕКУЩИЙ SOTA. НАШ КОД ДОСТУПЕН ОНЛАЙН.
И на этом академические исследования обычно заканчиваются. Однако с точки зрения производства этого не достаточно. Нет никакой гарантии, что модель, которая хорошо выглядит “на бумаге”, станет эффективной в производстве.
В этой статье будут рассмотрены дополнительные задачи, сопутствующие созданию моделей не только для научных исследований, но и для производства. Вы узнаете:
- почему производительность в офлайне не гарантирует производительность в онлайне;
- почему не все ошибки одинаковы;
- почему, помимо производительности модели, важны время - задержки и объяснимость;
- почему не стоит доверять спискам лидеров МО.
➡️ Читать дальше
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1🔥1
🔥 Полезнейшая Подборка каналов
🖥 Machine learning
@ai_machinelearning_big_data – все о машинном обучении
@data_analysis_ml – все о анализе данных.
@machinelearning_ru – машинное обучении на русском от новичка до профессионала.
@machinelearning_interview – подготовка к собеседования Data Science
@datascienceiot – бесплатные книги Machine learning
@ArtificialIntelligencedl – канал о искусственном интеллекте
@neural – все о нейронных сетях
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - работа ds, ml
🖥 Python
@pro_python_code – погружение в python
@python_job_interview – подготовка к Python собеседованию
@python_testit тесты на python
@pythonlbooks - книги Python
@Django_pythonl django
@python_djangojobs - работа Python
🖥 Java
@javatg - Java для програмистов
@javachats Java чат
@java_library - книги Java
@android_its Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
🖥 Javascript / front
@javascriptv - javascript изучение
@about_javascript - javascript продвинутый
@JavaScript_testit -тесты JS
@htmlcssjavas - web
@hashdev - web разработка
👣 Golang
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@Golang_google - go для разработчиков
@golangtests - тесты и задачи GO
@golangl - чат Golang
@GolangJobsit - вакансии и работа GO
@golang_jobsgo - чат вакансий
@golang_books - книги Golang
@golang_speak - обсуждение задач Go
🖥 Linux
@linux_kal - чат kali linux
@linuxkalii - linux kali
@linux_read - книги linux
👷♂️ IT работа
@hr_itwork - ит-ваканнсии
🖥 SQL
@sqlhub - базы данных
@chat_sql - базы данных чат
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - язык программирования rust
@rust_chats - чат rust
#️⃣ c# c++
@csharp_ci - c# c++кодинг
@csharp_cplus чат
📓 Книги
@programming_books_it
@datascienceiot
@pythonlbooks
@golang_books
@frontendbooksit
@progersit
@linux_read
@java_library
@frontendbooksit
📢 English for coders
@english_forprogrammers - Английский для программистов
🖥 Github
@github_code
@ai_machinelearning_big_data – все о машинном обучении
@data_analysis_ml – все о анализе данных.
@machinelearning_ru – машинное обучении на русском от новичка до профессионала.
@machinelearning_interview – подготовка к собеседования Data Science
@datascienceiot – бесплатные книги Machine learning
@ArtificialIntelligencedl – канал о искусственном интеллекте
@neural – все о нейронных сетях
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - работа ds, ml
@pro_python_code – погружение в python
@python_job_interview – подготовка к Python собеседованию
@python_testit тесты на python
@pythonlbooks - книги Python
@Django_pythonl django
@python_djangojobs - работа Python
@javatg - Java для програмистов
@javachats Java чат
@java_library - книги Java
@android_its Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
@javascriptv - javascript изучение
@about_javascript - javascript продвинутый
@JavaScript_testit -тесты JS
@htmlcssjavas - web
@hashdev - web разработка
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@Golang_google - go для разработчиков
@golangtests - тесты и задачи GO
@golangl - чат Golang
@GolangJobsit - вакансии и работа GO
@golang_jobsgo - чат вакансий
@golang_books - книги Golang
@golang_speak - обсуждение задач Go
@linux_kal - чат kali linux
@linuxkalii - linux kali
@linux_read - книги linux
👷♂️ IT работа
@hr_itwork - ит-ваканнсии
@sqlhub - базы данных
@chat_sql - базы данных чат
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - язык программирования rust
@rust_chats - чат rust
#️⃣ c# c++
@csharp_ci - c# c++кодинг
@csharp_cplus чат
📓 Книги
@programming_books_it
@datascienceiot
@pythonlbooks
@golang_books
@frontendbooksit
@progersit
@linux_read
@java_library
@frontendbooksit
@english_forprogrammers - Английский для программистов
@github_code
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2
🐼 Топ-10 вопросов о Pandas на StackOverflow
Объем структурированных табличных данных увеличивается с каждым днем. Именно поэтому дата-сайентисту так важно уметь анализировать табличные данные с помощью Pandas. Хотя самообучение — отличный способ повысить квалификацию, иногда может пригодиться и опыт коллег, которые быстрее нашли ответы на актуальные вопросы.
Хотите продвинуться в этом направлении и “прокачать” навыки работы в Pandas? Сделать это вам помогут решения, которые отвечают на десять вопросов из категории Pandas на StackOverflow, собравших наибольшее количество голосов.
Код для этой статьи можно найти здесь.
↪️ Читать дальше
@machinelearning_ru
Объем структурированных табличных данных увеличивается с каждым днем. Именно поэтому дата-сайентисту так важно уметь анализировать табличные данные с помощью Pandas. Хотя самообучение — отличный способ повысить квалификацию, иногда может пригодиться и опыт коллег, которые быстрее нашли ответы на актуальные вопросы.
Хотите продвинуться в этом направлении и “прокачать” навыки работы в Pandas? Сделать это вам помогут решения, которые отвечают на десять вопросов из категории Pandas на StackOverflow, собравших наибольшее количество голосов.
Код для этой статьи можно найти здесь.
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤2🔥1