Машинное обучение RU
17.7K subscribers
1.58K photos
210 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
Forwarded from Machinelearning
Это потрясающе! Новая 🤯 Llama 3 Reflection 70 превосходит, AnthropicAI
Claude 3.5 Sonnet и GPT-4o.


Reflection Tuning LLM обучена на синтетических структурированных данных, чтобы научиться рассуждать и самокорректироваться. 👀

1️⃣ Алгоритм начинает с вывода своих рассуждений в тегах <thinking>.
2️⃣ Если модель обнаруживает ошибку в своих рассуждениях, она использует теги <reflection> в разделе <thinking>, чтобы сигнализировать об этом и попытаться исправить себя.
3️⃣ Удовлетворившись своими рассуждениями, модель предоставляет окончательный ответ в тегах <output>.

Результаты модели:
🏆 89,9% MMLU, 79,7% MATH, 90,1% IFEval > Sonnet 3.5, GPT-4o
🥇 Лучший в мире открытый LLM (на момент выпуска)
🦙 Обучен на базе Llama 3.1 70B Instruct с новыми специальными токенами для <мышления>, <рефлексии>, <вывода>
🚀 405B модель в разработке, ожидается, что это будет лучшая из существующих моделей

🤗 Доступна на HF

📚 Набор данных и отчет об обучении будут готовы на следующей неделе.

Модель: https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B

@ai_machinelearning_big_data

#llama #opensource #llm
Forwarded from Machinelearning
🔥 Вышла новая модель MiniMax-01 456B с открытым исходным кодом с контекстом 4M !

🚀 Функции MiniMax-Text-01 и MiniMax-VL-01 основаны на ультрасовременной архитектуре "Lightning Attention".

→ В MiniMax-Text-01 реализован гибридный подход, при котором в 7 из каждых 8 слоев используется Lightning Attention, а в одном - SoftMax для улучшения баланса модель.

Такая архитектура позволяет эффективно обрабатывать сверхдлинные последовательности.

→ Версия с открытым исходным кодом включает в себя полный набор весов и API. По цене примерно 0,2 доллара за миллион входных токенов и 1,1 доллара за миллион выходных токенов — вполне конкурентоспособные цены.

На тестах модель превосходит платный Deep Seek v3 ! 💥

→ В задачах с длинным контекстом MiniMax-Text-01 достиг 100% точности в тесте поиска "Needle-in-a-Haystack" с использованием 4 миллионов токенов, превосходя топовые модели в реальных задачах с использованием искусственного интеллекта.

🖥 Github: https://github.com/MiniMax-AI/MiniMax-01
📑Paper:https://filecdn.minimax.chat/_Arxiv_MiniMax_01_Report.pdf
📖Read more: https://minimaxi.com/en/news/minimax-01-series-2

@ai_machinelearning_big_data

#llm #MiniMax #ai #agents #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2
Forwarded from Machinelearning
🖤 Open R1

Разработчики с Hugging Face повторил полный цикл разработки DeepSeek - от сбора данных до обучения! 🔥

Цель этого репозитория - объяснить все части конвейера создания R1 таким образом, чтобы каждый мог повторить его или построить поверх него свой проект.

Из чего состоит проект:
- src/open_r1 содержит скрипты для обучения и оценки моделей, а также для генерации синтетических данных:
- grpo.py : обучение модели с помощью GRPO
- sft.py: простой SFT
- evaluate.py: оценка модели на основе тестов R1.
- generate.py: генерация синтетических данных с помощью Distilabel.
- Makefile содержит простую в выполнении команду для каждого шага конвейера R1.

Github

@ai_machinelearning_big_data


#opensource #DeepSeekR1 #huggingface #OpenR1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥26👍63
Forwarded from Machinelearning
🐋 DeepSeek только что выпустила еще одну модель ИИ с открытым исходным кодом, Janus-Pro-7B.

Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.

Модели
: https://huggingface.co/deepseek-ai/Janus-Pro-7B
https://huggingface.co/deepseek-ai/Janus-Pro-1B
Quickstart: https://github.com/deepseek-ai/Janus?tab=readme-ov-file#3-quick-start 📖
Tech report: https://github.com/deepseek-ai/Janus/blob/main/janus_pro_tech_report.pdf

@ai_machinelearning_big_data


#ai #deepseek #opensource #Janus
🔥16👍6😁4