Forwarded from Machinelearning
Курс сочетает теорию (математика, физика) и практику (код, симуляторы), помогая разработчикам научиться создавать и программировать роботов.
▪ Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям .
▪ Практика: Примеры кода на Python и C++ для управления роботами.
▪Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов.
▪Задания: Реальные практические задачи (например, управление манипулятором робота).
▪ Начинающие робототехники: Освоить кинематику, динамику, управление.
▪ Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++.
▪ Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы.
▪Технологические энтузиасты
С курсом можно пройти путь от нуля до создания рабочего прототипа.
С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы).
P.S. Для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡
#course #ai #ml #robots #education #курс #робототехника
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9🔥5👍2🥰1
📚 Новая работа исследователей сравнивает два способа подключения LLM к учебным материалам, чтобы их ответы были точнее и полезнее.
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
👍7❤3🔥1