🤯 Apple и Оксфорд сделали ИИ умнее в 6,5 раза
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
👍7🔥3💩2😁1
Forwarded from Machinelearning
400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.
📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом
⚡ По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.
@ai_machinelearning_big_data
#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤4🔥2💩2
📊 Новое поколение баз данных для ИИ-агентов
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
👍5🤔3