oxbshw/LLM-Agents-Ecosystem-Handbook
One-stop handbook for building, deploying, and understanding LLM agents with 60+ skeletons, tutorials, ecosystem guides, and evaluation tools.
Language: Python
#ai #ai_agent #ai_agents #fine_tuning #finetuning_llms #freamework #llm #llmops #local_development #mcp_server #memory #rag #rag_chatbot #voice_agent
Stars: 198 Issues: 0 Forks: 29
https://github.com/oxbshw/LLM-Agents-Ecosystem-Handbook
One-stop handbook for building, deploying, and understanding LLM agents with 60+ skeletons, tutorials, ecosystem guides, and evaluation tools.
Language: Python
#ai #ai_agent #ai_agents #fine_tuning #finetuning_llms #freamework #llm #llmops #local_development #mcp_server #memory #rag #rag_chatbot #voice_agent
Stars: 198 Issues: 0 Forks: 29
https://github.com/oxbshw/LLM-Agents-Ecosystem-Handbook
GitHub
GitHub - oxbshw/LLM-Agents-Ecosystem-Handbook: One-stop handbook for building, deploying, and understanding LLM agents with 60+…
One-stop handbook for building, deploying, and understanding LLM agents with 60+ skeletons, tutorials, ecosystem guides, and evaluation tools. - oxbshw/LLM-Agents-Ecosystem-Handbook
👍1
WooooDyy/AgentGym-RL
Code and implementations for the paper "AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning" by Zhiheng Xi et al.
Language: Python
#agent #llm #llm_based_agent #scaling
Stars: 255 Issues: 4 Forks: 21
https://github.com/WooooDyy/AgentGym-RL
Code and implementations for the paper "AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning" by Zhiheng Xi et al.
Language: Python
#agent #llm #llm_based_agent #scaling
Stars: 255 Issues: 4 Forks: 21
https://github.com/WooooDyy/AgentGym-RL
GitHub
GitHub - WooooDyy/AgentGym-RL: Code and implementations for the paper "AgentGym-RL: Training LLM Agents for Long-Horizon Decision…
Code and implementations for the paper "AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning" by Zhiheng Xi et al. - WooooDy...
👀1