Математика Дата саентиста
14K subscribers
439 photos
168 videos
39 files
383 links
Download Telegram
🎯 AI в математическом решении проблем — современные достижения и тренды

Недавние прорывы демонстрируют, как искусственный интеллект постепенно осваивает задачи, которые ранее считались пределом человеческого разума.

🎓 Прорыв от DeepMind

• AlphaProof + AlphaGeometry 2 научились решать задачи уровня Международной математической олимпиады
• AI получил серебро: 4 из 6 задач IMO решены, включая сложную геометрию
• Одна из задач была решена за 19 секунд — уровень мирового финалиста

🧠 Прогресс в больших языковых моделях

• GPT-4, Qwen2‑Math, rStar‑Math достигают 80–90% точности на математических задачах (MATH, AIME)
• Используют рассуждение по цепочке (Chain-of-Thought) и поисковые деревья
• Это повышает точность и уменьшает количество логических ошибок

📐 Формальная и творческая математика

• AI учится использовать proof-ассистенты (формальные доказательства)
• Метрика CreativeMath оценивает «творчество» AI — насколько оригинальны решения
• Это делает модели не просто калькуляторами, а потенциальными открывателями новых идей

📊 Что это даёт

Сфера | Возможности AI
-----|----------------------
Образование | Интерактивные помощники, обучение математике
Исследования | Генерация гипотез, автоматическое доказательство
Бизнес | Оптимизация, логистика, криптография, финтех


🧭 Куда движемся дальше

• Новый бенчмарк FrontierMath проверяет научные способности моделей
• Гибридные архитектуры: нейросети + символика + формальные системы
• Применения в науке, финансах, образовании — становятся повседневными

💬 А вы как думаете?

• Может ли AI когда-нибудь доказать теорему, которую не смог человек?
• Какие приложения AI в математике вам кажутся самыми перспективными?

Статья

#AI #Mathematics #DeepMind #LLM #FormalProof #Innovation
9👍4🤔2👎1
Forwarded from Machinelearning
🌟 OpenReasoning-Nemotron: набор ризонинг-моделей от NVIDIA.

OpenReasoning-Nemotron - набор LLM на архитектуре Qwen 2.5 и дистиллированных из DeepSeek-R1-0528 ( 671 млрд. параметров):

🟠OpenReasoning-Nemotron-1.5B;
🟠OpenReasoning-Nemotron-7B;
🟠OpenReasoning-Nemotron-14B;
🟢OpenReasoning-Nemotron-32B;

Семейство было обучено на 5 млн. примеров рассуждений в математике, естественных науках и программировании.

Модели показали достойные результаты pass@1 на бенчах GPQA, MMLU-PRO, AIME, HMMT и LiveCodeBench - без использования RL.

Старшая модель, 32B, выбила 96,7% по HMMT с декодированием GenSelect.


📌Лицензирование: CC-BY-4.0 License.


🟡Статья
🟡Набор моделей


@ai_machinelearning_big_data

#AI #ML #LLM #Reasoning #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍3🔥2🥰1😁1
Forwarded from Machinelearning
Speculative Cascades — как ускорить работу LLM

Google Research придумали новый способ сделать большие языковые модели быстрее и дешевле.

Что это такое:
🔹 Каскады
Сначала отвечает маленькая модель. Если задача слишком сложная - подключается большая. Так экономятся ресурсы, но качество может прыгать.

🔹 Спекулятивная декодировка
Маленькая модель угадывает сразу несколько слов вперёд. Большая быстро проверяет данные и подтверждает. Скорость выше, но большая модель всё равно тратит много ресурсов.

🟢 Speculative Cascades
Это комбинация: маленькая модель иногда отвечает полностью сама, а иногда используется как ускоритель для большой. В итоге получаем меньше затрат, больше скорости и то же качество.

🔥Что показали тесты (тестили на Gemma, T5):
- быстрее, чем обычная спекулятивная декодировка
- дешевле и качественнее, чем каскады
- удобнее настраивать баланс «скорость качество»

При том же уровне качества, что и у спекулятивной декодировки, новый метод работает быстрее (генерирует больше токенов за один вызов большой модели).

А в задачах математических рассуждений получен явный апгрейд по скорости при сохранении или даже улучшении качества.

LLM всё чаще используются в поиске, чатах, ассистентах. Чтобы они реально были полезными, их нужно ускорять и удешевлять. *Speculative cascades* помогают это сделать без потери качества.

🔗 Подробнее: https://research.google/blog/speculative-cascades-a-hybrid-approach-for-smarter-faster-llm-inference/

@ai_machinelearning_big_data


#AI #LLM #Inference #SpeculativeDecoding #Cascades #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3💩2💔1